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Modélisation Mathématique et Analyse Numérique

FINITE-DIFFERENCES DISCRETIZATIONS OF THE MUMFORD-SHAH
FUNCTIONAL

ANTONIN CHAMBOLLE1

Abstract. About two years ago, Gobbmo [21] gave a proof of a De Giorgi's conjecture on the ap-
proximation of the Mumford-Shah energy by means of finite-differences based non-local functionals
In this work, we introducé a discretized version of De Giorgi's approximation, that may be seen as a
generahzation of Blake and Zisserman's "weak membrane" energy (first mtroduced m the image seg-
mentation framework) A simple adaptation of Gobbmo's resuit s allows us to compute the F-limit of
this discrete functional as the discretîzation step goes to zero, this generahzes a previous work by the
author on the "weak membrane" model [10] We deduce how to design m a systematic way discrete
image segmentation functionals with "less anisotropy" than Blake and Zisserman's original energy, and
we show m some numerical experiments how ît improves the method

Résumé. Une conjecture récente de De Giorgi, sur l'approximation de la fonctionnelle de Mumford
et Shah par des fonctionnelles non locales basées sur des différences finies, a été démontrée il y a un
peu plus de deux ans par Gobbmo [21] Nous introduisons dans ce travail une version discrétisée de
l'approximation de De Giorgi, que l'on peut voir comme une généralisation de l'énergie de "membrane
faible" introduite par Blake et Zisserman pour la segmentation d'images Une adaptation élémentaire
des démonstrations de Gobbmo permet de calculer la F-hmite de cette approximation discrète, lorsque
le pas de discrétisation tend vers zéro , ce calcul généralise un résultat précédent de l'auteur sur
l'énergie de "membrane faible" [10] On déduit ainsi une manière de construire systématiquement
des fonctionnelles de segmentation d'images "moins anisotropes" que l'énergie originale de Blake et
Zisserman, et l'amélioration obtenue est illustrée par des expériences numériques
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1. INTRODUCTION

In wmter 1995-96, De Giorgi imagmed the followmg non-local functional, defined for any measurable function
u on Jfc*

E£(u) = f f iarctg - , « | - dxdi
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262 A. CHAMBOLLE

as a possible approximation, as E go es to zero, of the non-convex part of the Mumford-Shah functional

E{u) = X f \Vu(x)\2 dx + fi^-^
JRW

defmed on functions u € GSBViocÇ^N) of "generalized special functions with bounded variation" (for the précise
définition and main properties of this space, and more information about the Mumford-Shah functional, see
Appendix A), with Su the "jump set" of u and 7iN~1 the N — 1 dimensional Hausdorff measure, and À, ji two
positive parameters.

One year later, Gobbino [21] gave a proof of De Giorgi's conjecture: he established that, as e 4- 0, E£

F-converges to E in the strong LP(RN) topology for any 1 < p < +oo, for À = ^|— and \i — X^/TT. (See
Appendix B for the définition and properties of the F-convergence.)

Mumford and Shah's functional was introduced first in [22] as a possible continuous version of the following
"weak membrane" energy, that Blake and Zisserman [7] had suggested to minimize in order to solve the image
segmentation problem:

$^ / ( | ^+ i , j - v>ij\2) + f(\uiJ+1 - uid\
2) + \mj - 9ij\2,

where f(x) = ax/\f3 (a,/3 > 0 and X AY dénotes min(X, F)), (9i,j)i<ij<n ^ [0; l ] n X n is an "original" grey-level
image of n x n pixels, and {uij)i<ij<n is the output "segmented" image (hère a discontinuity is supposed to
occur between two adjacent pixels when the différence between the values of u on each pixel is greater than

By minimizing this discrete functional, the aim is to rebuild from the original data g a piecewise regular
image u (the discontinuities of u corresponding to the edges in the image) that should be easier to analyze, in
particular when the original is corrupted by noise (Blake and Zisserman's energy is actually derived from the
free energy introduccd in [19], where S. and D. Geman propose a probabilistic approach to the edge-preserving
denoising of discrete images corrupted by an additive GaHSsian noise). Many image reconstructior^rnethods-
have been based on this kind of énergies since the late 80's, we refer for instance to [16,17], to [18] and to [6]
where some variants are presented and applications are described.

In order to understand the relat ionship between Mumford and Shah's functional and Blake and Zisserman's,
the author studied in [10] the behaviour of the discrete image segmentation problem as the pixels' size goes to
zero and their number to infinity (see also [9] for the one-dimensional case) and proved the F-convergence of
the weak membrane energy, as n —» oo, to an anisotropic version of the Mumford-Shah functional, namely

a / \Vu(x)\2 dx + {3 f (K | + |zA3|)tfH
1+ / \u(x) - g(x)\2 dx,

J(0,l)2 JSU J(0,l)2

where v = (1^1,̂ 2) G S1 is the unit normal to Su (defined H1-a.e.). In order to obtain this result Blake and
Zisserman's energy had to be weighted and rewritten in the following way, introducing the discretization step
h = l /n:

gh being some reasonable discretization of g at the scale h.
In some of the above mentioned image processing papers it had been noticed that the results could be improved

by trying to modify slightly the energy, making it "less anisotropic". This paper deals with the mathematical
analysis of such variants, and gives a gênerai solution. We explain 1) how Blake and Zisserman's energy has to
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be modified in order to approximate better the Mumford-Shah functional; 2) how this mathematical result can
be exploited to actually obtain better segmentations of images.

More precisely, we rely in this paper on Gobbino's result to establish a generalization of the approximation
theorem of [10] to discrete énergies involving arbitrary fmite différences and more gênerai functions ƒ. The
practical conséquences of this rather theoretical result are then described in Section 2, where we show how to
design variants of the weak membrane energy, that approximate better (ie., in a aless anisotropic" way) the
Mumford-Shah functional, and show in numerical examples that they produce "nicer" segmentations.

Let O Ç WN be an open domain with Lipschitz boundary, and for every h > 0 and every u : f£ n KLN —» 3R
let

(1)
n \ n, i

where:

• (p : ZN -» [0, +oo) is even, satisfies <£(0) = 0, X^ G Z N |£|2<K0 < +°o, and </>(ei) > 0 for any i= 1, . . . , N
where (e )̂i<^<iv is the canonical basis of WLN (in practical applications the support of 4> will have to be
finite and small);

• for any £ with </>(£) > 0, f$ : [0,+oo) —>• [0,+oo) is a non-decreasing bounded function with f^ = /_^,
/^(0) — 0, ƒ£(()) = a^ > 0, and liirit^+oo/c (*) — ̂ , and we assume that f% is below (or equal to) the
function t M- a^ A fiç. We also assume both sup êZAr a$ and sup^EZiv ^ are finite;

• we will adopt in the sequel the convention that any term in the sum above is zero whenever either x or x + h£
is not in ft even if we do not explicitly write these conditions under the summation signs (this convention
will be adopted throughout the whole paper unless otherwise stated), as well, we'll usually write Fh(u)
instead of Fh(u, ft) when not ambiguous.

Fix p G [1, +oo), and let £p(£7 n hZN) be the vector space of functions u : fl f) hZN —> M such that the norm

N I P =

is finite. In the whole paper we will always identify a function u in £p(Çt n KL ) and the piecewise constant
function in LP(M.N) equal to u(x) on x + (— ̂ , | ) for any x G £2 H /iZ^ (and to 0 elsewhere), so that
||w||p = ||u||i,p(i&iv) and that a sentence such as uUh G tP(Qf) KLN) converges to u G LP(Q) as h 4- 0" will have
a natural sensé. We also set Fh(u) = -foo for any u G Lp(^7) that is not the restriction to Î7 of the piecewise
constant extension of a function in lp{Vt n KLN).

Let now, for any u G Lp(ft) n GSBVloc(Vl),

f ^ /" ^
F(u) = / > <f>(£)aç\{Vu(x),Ç)\ dx + / / . ^ ( O ^ K ^ U W J O I ^ (x) ^ [ 0 Î + ° ° ] Î (2)

and set F(u) = +00 if u e iT'(fi) \ G5BVr;oc(îî). We will also dénote sometimes

F(u,B) =

when B C ft is a Borel set. An adaptation of Gobbino's results leads to the following theorem.
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Theorem 1. Fh V-converges to F as h 10 in the strong topology of LP(Q), for any p 6 [1, +oo).

As a corollary, we also prove

Theorem 2. Let p G [1, +co); g e LP(Q) H L°°(Q,), and for any h > 0 let uh be a minimizer over £P(Q D hZN)
of

Fh(u) + [ \u{x) - g(x)\pdx

(or, equivalently, of

+ {\\u-9h\\p)
P (3)

where gh G £p(D,nhZN) is a suitable discretization of g at scale h, with gh -¥ g in LV{Q) as h i 0 and
\\gh\\oo < WQWOO for ail h). Then (uh) is relatively compact in Lp(Çl) and if s ome subsequence Uh3 goes to u as
j —> oo, u G SBVioc(p) Pi Lv(Vt) is a minimizer of

F(u) + [ \u(x)-g(x)\pdx.

Remark 1. In [10], Theorem 2 is proved for p = 2, TV" = 2, ft = (0,1) x (0,1), </> = 0 on Z2 except 0(0,1) =
,0) = 0(0,-1) = 0(-l,O) = 1/2, and /^(i) = at A^ (a,/3 > 0), so that

F(u) = a

where ||x||i = |xi| + |a?2| for any x € M2.
Remark 2. A few other discrete approximations of the Mumford-Shah functional have been proposed. G. Bel-
tettini and A. Coscia have established the P-convergence of finite éléments based approximating ranctionals, to
the original isotropic functional E. Their resuit is based on the discretization of L. Ambrosio and Tortorelli's
approximation [4,5], in which the discontinuity set is represented by an auxiliary fonction v that in some sensé
concentrâtes near the set as the approximation cornes closer to the solution. In [11], Dal Maso and the author
have proposed an alternate finite éléments method for approximating the Mumford-Shah functional E.
Remark 3. The condition <f>(ei) > 0 for i = l, . . . , iV is necessary only for the coercivity, Le. to establish
Lemma 1 and Theorem 2. This is important in practical applications for the stability of the numerical schemes.
For the F-convergence it would be sufficient to assume that </>(£z) > 0, i = 1, . . . , TV for some basis (&)I<Î<JV G
ZNxN ofR*.

In the next section we describe a numerical implementation of the minimization problem (3), and show how
the choice of <£, aç and 0% influence the results. Then, we prove Theorem 1 (explaining how Gobbino's proofs
can be adapted to this case) and deduce Theorem 2.

2. APPLICATIONS

The version of Gobbino's resuit we present in this paper has interesting conséquences, that will be clear in
the few numerical examples (in ft — (0,1) x (0,1) C I 2 , and with p = 2) we will show later on.

2.1. An itérative procedure for minimizing (3)

Before showing the examples, we first quickly describe a standard procedure for minimizing énergies such
as (3). Of course we do not pretend to compute an exact minimizer of the energy, since the high non-convexity
of the problem does not aliow this. However, the itérative algorithm we describe gives satisfactory results.
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A variant has been successfully implemented in the case of the approximation of [11] (see [8]). Many other
similar implementations have been made for solving image reconstruction problems (see for instance [6,23], and
the pioneer ing work [18] by Geman and Reynolds).

We assume Çl is bounded so that the discrete problem is finite-dimensional for every fixed h > 0 (in the
applications Q, will be a rectangle). The non-convexity in the energy Fh comes from the non-convexity of the
fonctions ƒ$, £ G ZN. In order to simplify the computations we will assume that the ƒ$ are all identical, up to
a rescaling:

*<*) = ht ( f
for all £ £ ZN (with <f>(£) > 0) and t>0. The function ƒ is nondecreasing, and satisfies /(O) = 0, ƒ (+oo) = 1,
and /'(O) = 1. We will assume as well that it is concave, and difïerentiable. Thus, —/is convex (we extend it
with the value +oo on {t < 0}), and lower semi-continuous. Let

tf(-«) = suptv - ( -ƒ)(*) = ( - ƒ ) »
teR

be the Legendre-Fenchel transform of — ƒ, by a classical result (—ƒ)** = —ƒ so that

—f(t) — suptv — ip(~v) = — inf tv + ip(v).

It is well-known that the first sup in this équation is attained at v such that t G d(—f)*(v) (the sub different ial of
(-ƒ)* at £), and that this is equivalent to v e ö(-ƒ)(*), and since d(-f)(t) = {-ƒ'(*)} for £ > 0 and (-00, -1]
for t = 0 we deduce that the sup is reached at some v G [—1,0] (since for t = 0 we check that (—ƒ)*(—1) = 0
and thus the sup is reached at v = —1). Hence

f(t) = min tv + ifc{v)

and the min is reached for v — f'(t). We may therefore rewrite Fh in the following way:

Fh(u) = min Fh(u,v)

(4)

for v :(ün hZN) x (fï n /iZ^)-»-^, 1] and

Fh(u,v) =

The algorithm consists in minimizing alternatively Fh(uy v) + \\u—gh\\2 with respect to u and v. The minimization
with respect to v is straightforward, since it just consists in computing for each x, y € ft f] KLN

with £ = ±(y — x)/h. The minimization with respect to u is also a simple (linear) problem, since the energy is
convex and quadratic with respect to u. Of course there is no way of knowing whether the algorithm converges
to a solution or not, what is certain is that the energy decreases and goes to some critical level, while the
function u converges to either a critical point or, if it exists, a continuüm of critical points. Notice that if ƒ is
strictly increasing, v is everywhere strictly positive.
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2 7TX
In the applications shown in this paper we considered ƒ (£) = — arctg —, so that

7T 2

m = —W-
Notice that one never has to compute explicitly the position of the edges during the minimization. Once a
minimizer of the energy has been found, it is possible to extract the edges out of the segmented image by
standard algorithms (using Canny's or more sophisticated edge detectors, with a very narrow kernel since the
images on which the edges have to be found are piecewise smooth). The value of the auxiliary function v is also
a good indicator for the position of the edges (it is "large" on the edges and close to zero everywhere else), and
should be taken into account. An elementary method may be for instance to consider the zero-crossings of the
(discretized) operator d2u(Vuy Vu) in the régions where v is large.

2.2. Anisotropy of the length term

In this section n will be an integer (n > 1), we will set h = l /n and the functions u and gh (defined on
[0,1) x [0,1) H KL2) will be denoted as n x n matrices (ui^)o<ij<n and (9i'j)o<ij<n- We will compare the two
following cases

(z.e., some regularization of Blake and Zisserman's "weak membrane" energy) and

By Theorem 2, the limit points of the minimizers of E^ and E^ as n—^oo, will be minimizers of respectively

£&>(«) = Ai / \Vu(x)\2dx + fiiAi(Su) + / \u(x) -g(x)\2dx
JQ Jn

and

E2
oo{u) = \2 f \Vu(x)\2 dx + f,2A2(Su) + / \u(x) - g(x)\2 dx,

Jn Jn

(for u e L2(Q) Pi GSBV(ft), and +co otherwise) with fi = (0,1) x (0,1), A: = ai , A2 = a2 -f 2a2î and

where (i'i(ar), ̂ (^)) is the normal vector to Su at x. Simple computations show that /?2 = / ^ / v ^ is an optimal
choice, since it minimizes the ratio of the length A2 of the longest (with length A2) vector in S1 over the length
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FIGURE 1. The solid line represents the length of a unit vector, as a function of the angle.
Left: for Ai, right: for A2. The dashed line is the unit circle.

of the shortest. For any rectifiable 1-set E c i 2 with normal vector (i/i, 1/2) at x we define the lengths

i (E) =

and

(Notice that A2 = (Ai + Ai o R* )/2 where RIL is the rotation of angle TT/4 in M2.) The choice of the parameters
TT/4 and TT/8 is made in order to ensure that a "random" set of lines has in average the same length Ai and A2
(and Euclidean length), in other words, the unit circle has length 2TT in both cases. This is of course not the
only possible choice. For instance, one could prefer to parametrize these lengths in such a way that the error
(with respect to the Euclidean length) Az(emax) — 1 on the measure of the longest (for Az) vector emax G S1

is equal to the error 1 — A%(emin) on the measure of the shortest vector. In this case, one should choose as
parameters 7-̂ -7= instead of TT/4 for Ai and 2 , instead of TT/8 for A2.

With the choice we made, we get that \i\ = 4/?I/TT and ^2 — Üfo/ft- In both cases the limit energy is
anisotropic, what is interesting is that the second length A2 is f ar "less anisotropic" than the first length Ai.
As a matter of fact, the longest vector in S1 for Ai is about 41.4% longer than the shortest (the ratio is /
while it is only 8.2% longer for the length A2 (the ratio is 2 ^ c o s f / ( l + A/2) = \/4 + 2^1/(1 + A/2)). The
différence of anisotropy of both lengths is striking on figure 1.

2.3. Numerical experiments

We show hère a few experiments, so that the reader can see for himself the différence of behaviour of the
lengths Ai and A2. Notice that in all of our comparisons we of course always choose X± = À2 and fjb\ = ̂ 2- In
Figure 3 and Figure 4 (see original pictures in Fig. 2), one notices that the edges are usually nicer when length
A2 is used, whereas images obtained by minimization of energy E^ are more "blocky". Notice in particular
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FIGURE 2. Original images for the next examples.

FIGURE 3. The segmented column. Left, by minimizing energy E^, then with energy E\. The
details are presented in the same order.

the diagonal line at the bottom of the image. However, the vertical edges on the column (Fig. 3, second picture)
are nicer with energy ££. The reason is clear: these edges are vertical, and the vertical and horizontal lines
have a much lower costs than lines with other orientations with this energy.

In Figures 4 and 5 the results are similar: the edges look much nicer when energy E^ is minimized. The
other two figures show segmentations in présence of noise. In the two segmentations of the disk, the total length
of the edges found was 6.56 x R with energy E% and 6.40 x R with E^. These lengths are slightly overestimated
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FIGURE 4 Segmented lady with energy E% and two details

FIGURE 5 Segmented lady with eneigy E\ and two details

because a few spunous edges weie found, and also because of some oscillation of the boundaiy, that is due to
the noise Agam m Figure 7 the resuit is moi e blocky with eneigy E^
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FIGURE 6. The noisy disk (grey level values 64 (disk) and 192 (background), std. dev. of noise
40). Middle, the segmented disk with energy E\. Right, with E\.

FIGURE 7. A noisy image (std. dev.= 25 for values bet ween 0 and 255) and the segmented
outputs, by mimmizing E\ (middle) and E\ (right).

In the last two experiments we show we used another energy, namely,

0'3
U

„h |2

We choose (3'3 = fiz/y/2 and /3'^ = fe/VE. Now, as n—>-oo, the limit points of the minimizers of E^ minimize

El(u) = X3 f |V«(i) |2di + M3A3(5„) + / \u(x) - g(x)\2 dx,
Ja JQ.
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05 -

-0 5 -

-0 5 0 5

FlGURE 8. Same as Figure 1, this time for À3.

with A3 = a3 + 2a3 + 10a3',

V2
+2v2(x) - 2u2(x)

(this time A3 = (Ai + Ai o R^ + Ai o Re + Ai o R_e)/4 with 61 = arctg 2), and //a — IÖ^/TT. Figure 8 illustrâtes
how "isotropic" the measure A3 is, and Figures 9 and 10 show examples. (Now, the length of the longest vector
in S1 is about 5.0% greater than the length of the shortest.) The results look slightly better than the ones
obtained with energy E^, however, the computational cost is quite higher.

3. PROOF OF THEOREM 1 AND THEOREM 2

This section is entirely devoted to the proof of the theoreticai results. We rely essentially on Gobbino's
work [21], but since (little) adaptations are necessary in the case we present, and since, moreover, there is a
very slight différence in our proof (which avoids the use of Gobbino's technical Lemmas 3.1 and 3.2 in [21]), we
will give quite a few details. We let for any u G LP(Q)

and

In the next Section 3.1 we will prove a preliminary lemma that will be helpful in the sequel. Then, the aim
of the following two Sections 3.2 and 3.3 will be to prove Theorem 1, i.e., to prove that Ff(u) > F(u) and
F"{u) < F(u) for all u G Lp(Çl). Eventually in Section 3.4, we will prove Theorem 2.
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à
• *\?^.

FIGURE 9, Segmentation with energy E^ (the column).

FIGURE 10. Segmentation with energy E^(ihe lady)
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3.1. A compactness lemma

The lemma we show in this section will be needed to establish Theorem 2, but it will also give some a priori
information on the regularity of functions u G LP(Q) such that Fr{u) < +oo.

Lemma 1. Let hj i 0 and Uhö G £p(£l H hjl*N) such that

supFh^Uhj) < +oo and swp\\uhj\\oo < +oo.
3 3

Then there exist a subsequence (not relabelled) Uhó and u G SBVioc{Q) such that

Uhj{x)^u(x) a.e. in Cl

as j goes to infinity, and

f iVuix^dx + U*-1^) < +oo.
Jn

Proof. In order to simplify the notations we drop the subscript j . Let c = min^=i:,.Mjv <p(ei) > 0, ƒ =
min^i^.^Ar fe%, and choose a, /3 > 0 such that at A f3 < f(t) for all t > 0. We have:

N
N uh(x) - uh(x + hei)

Fh(uh)>2ch

(remember we only sum on x such that x,x + hei € O). We first show that the séquence (uh) is bounded
in BVioc(£l) (so that it is compact in L[OC(Q)). Choose R > 0, i G { l , . . . , iV} , and write (with O

x G

n - uh{x

x£X+

hei)
h

where X+ = jx G ftZ^ n 5^(0) : \uh(x) - uh(x + hei)\ > ^(3h/a\ and X_ - /iZ^ n 5^(0) \ X+. Of course,

we only consider points x G ftZ^ such that x and x + hei belong to Q,. Then, using the Cauchy-Schwarz
inequality,

% l hN

N
UK2

/3c • — y 2ac

with C some constant depending only on iV, so that eventually, for any r\ > 0,

C +00.
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This shows that upon extracting a subsequence we may assume that un converges almost everywhere in Vt (and
in £foc(fi), as well) to some function u that belongs to BV(Q H BR(0)) for any R > 0.

Now consider the extension of uh (on 1 ^ , Uh(x) being considered to be 0 outside of fi)

vh{y) =

where A(t) = (1 - |£|)+ for any t E M and AN(y) = Yl^L\ &{y%) fo r anY V e ^N• W e estimate
"elementary cell", for instance (0,^)^:

on an

dy =
(o,h)

-h j dy2... dyN

+ /

öf2/3 - - -

dî/3 . . .

JV

uh(h,x) -

0, x) - uh(0,0,

dy

iV

2 = 2

N

- x%

Vuyh, ft,
W - 2

u^(/i, 0,x)

^ ) - T/h h,x)

by induction we deduce that

dy <
x) ~uh(07x)

Notice that we could therefore conclude that

N

|V^(y)|2dy<^ V V het)

(with ^yjv^ = xGÎ] : dist (as, 9ÎÎ) > VÏV^ k since we control the gradient of v^ only on the cubes x + (0, ft)^,

rc € /iZ*^ whose 2^ vertices ail belong to fi), but since we can not control the right-hand side of this expression
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if it is summed over all x we must introducé a slight modification of Vh- we define thus Vh = Vh, except each
time

\uh(x) - uh(x -f hei)\ > \ —, (5)

in which case we set Vh = 0 on (rr, x + hei) x T L ' ^ ^ ~~ he^,x + he^) = U^ei. The new function Vh is in
SBVioc{£l), and S$h Ç U^e^eXh ^x,ei where the union is taken on Xh = {(x,e^) : (5) holds}. Now, we can
write

moreover since ^^(dU^J = KhN~x (with K = 2iV"1(7V + 1)),

From (6) and (7) and since sup^ Ht'̂ Hoo < +c>o, we deduce invoking Ambrosio's Theorem 3 (see Appendix A)
that some subsequence of Vh converges to a function v E L°°(Q) D SBVioc(fl), with

/ \Vv{x)\2dx + UN-\Sv) = sup / \Vv{x)\2dx + UN-\AnSv) < ±- (- + ^] liminf Fh(uh) < +00.
Jn ACCQJA 2c \a f3J h±o

The proof of the lemma is achieved once we notice that v must be equal to u (as for instance by the construction
of VH and Vh it is simple to check that for any A CC Vt with regular boundary JA(uh(y) — Vh(y)) <&/—»0
asfe|0). D

Remark. If we drop the condition </>(ei) > 0 for i = 1, . . . , N, the result may be false. For instance, if N = 1,
</> = 0 except at —2 and 2 where <j>{—2) = 4>(2) — 1, the family (uh)h>o defined by

f 0 iïk G 2Z
| 1 i f j f c G 2 Z + 1 f o f c G Z

satisfies the assumptions of Lemma 1 but is not compact.

3.2. Estimate from below of the F-limit

In this section we wish to prove that for all u € Lp(fl),

F(u) < F'(u). (8)

We must therefore prove that for any u € LP(Q) and any séquence (uh3) that converges to u in Lp(fl) as j^-oo
(with hrnj^oo hj — 0) we have,

F(u)<]hnw£Fhi(uhj). (9)

Let u G Lp(ü)7 and we will suppose first that it is bounded. Choose also an arbitrary decreasing séquence hj l 0
and functions Uhó that converge to u in LV(Q). We can assume that ||ÏX^||OO ^ ||^||OOÏ ^S truncating Uhó we
decrease its energy Fhj(uhj). It is clearly not restrictive to consider, as well, that the liminf is in fact a limit,
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and that sup^ Fh3 {^h3) < +00 (since if liminf^oo Fh3 {^h3) — +00 the result is obvious). In view of Lemma 1
we deduce that

ueSBViöc(n) and / \Vu{x)\2 dx ^%N~1{SV) < +00. (10)
Jn

In the sequel we will drop the subscripts j and write uh | 0" for "j—>oo". We prove (9) following Gobbino's
method in [21], with a few modifications and adaptations. Let

and notice that f21 y^h = < x E ft : dist(x, dfl) > ̂ y/Nh > C fi^. We have (still using the convention that we
only consider in the sums the points that fall inside ft)

m

1*

For e ver y ^ G ZN we let

Inequality (9) will follow by Fatou's lemma if we prove that for any £,

liminf Fh(uh,0 >aç f \(Vu(x),O\2 dx + ft f |(^(x),OI dn1"-1 (x). (11)

We choose A CC O. If h is small enough (z.e., /i < dist(A,ôîl)/(|C| + fV^)) then

and it will be sufficient to show that

lim inf
(u>h(y) - uh(y + h£)) \ f

; \ ay > at ƒ Vu ur ,
^ ) * JA sunA

(12)

as the supremum of the right-hand side of (12) for all A CC £1 is the right-hand side of (11). This is part of
Gobbino's result [21], but we present a slightly different approach, still based on the "slicing" (see Appendix A
for technical details) of the functions Uh in the direction £.
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LetÇ± = {zeRN : {z,£) = 0}, and for every z G ̂ , AZÂ = {s G R : z + s£ G A}7. (uh)Ztç(s) =
We rewrite the first intégral over A in (12):

f dH»-Hz) f

= iti f dnN'Hz)Y: f k («u»)^s)(uhU(s + h))\ ds
J^ keZJAZiin[kh,kh+h)h V

(by the change of variable t + kh — s) where the sum is taken only on the k G Z such that t + kh G AZ)^. Now,
with the change of variable t = hr, this becomes

I Z—• ^j \

We will prove that for a.e. (z,r) G ̂ x x (0,1),

liminf fc V - f
HO ^ h C

uf
zAx)\2dx + PzU°(SUMKnAXii). (13)

In order to prove (13), we need some information on the limit of {{UH)Z^{{^ + k)h))ke% a s ^ i 0- Since, using
the same changes of variables,

f \uh(y)-u(y)fdy = j dUN~\z) j \{uh)z^{s) - uZÂ{s)\* \H\ds

(where in the sum we consider only k such that (r-\-k)h G QZyç) w e may assume (upon extracting a subsequence)
that for a. e. (Z,T) G ̂ x x (0,1),

lim h53 | K W ( ( T + *)/i) - «,l€((r + k)h)\* = 0. (14)

Choose a (z,r) such that (14) holds. By (10) we may also assume when choosing z that

uZÂ G SBVioc{nzÂ) and / \uf
z ̂ s)\2 ds + H°{SU^) < +oo,

so that u ^ is continuous except at a finite number of points. Thus, for almost all s G fîz,£j
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(where [•] dénotes the integer part). We easily deduce from this and (14) that the piecewise constant function
defined by

converges to uZ£ in L^oc(ftz^).

Remark. Following Gobbino (proof of Lemma 3.3, Step 2 in [21]) we could also prove that for a.e. r e (0,1),
uz^((r + [s/h])h)—>uz^(s) in Ljoc(ftz^), so that the a priori information on the regularity of u is not really
needed.

We return to the proof of inequality (13). For any / CC Az^ we dénote

h)-vh(s \2

h

If h is small enough, (r-\-[s/h])h G AZ£ for every 5 G / so that the lim inf in (13) is greater than lim inf ̂ o G(v/i, / ) .
Therefore, we just need to prove that for any / CC Az^

lim inf G(vh,I) > a* [ \u'z As)\2 ds + /3,n°{SUze n i ) ; (15)
h^O J j ^

indeed, taking then the lowest greater bound of the right-hand term of (15) for ail /, we will get (13). Because
of the super-additivity of lim inf/40 G{vh, •) we may assume without loss of generality that / is an interval. To
prove (15), we then choose a, j3 > 0 such that ai A@ < fç(t) for alH > 0 (noticing that a—respectively, /?—may
be chosen as close as wanted to a^—resp.^, jS )̂, and we write

vh((k+l)h)-vh(kh)
G(vh,I) > } ^ ha

(kh,kh+h)Cl

Redefining a function Vh wit h Vh(kh) = Vh(kh) for kh e I, affine on the intervals (kh, kh + h) c I such that

ha h — — P anc^ piecewise constant, jumping once on the intervals with the reverse inequality
(just like in [9]), we get

G(vhJ) > a f \vf
h(s)\2ds + pH°{SvhnIh)

Jih

with Ih = {x € / : dist (a?, M \ /) > fe}, so that invoking Theorem 3 (Appendix A) we get the existence of a
function v such that some subsequence of Vh goes to v a.e., and that satisfies

a f \v\s)\2ds + pn°{Synl) < liminfGK,!). (16)
Jj hlO

We check then that v has to be equal to uZ£ (noticing easily, for instance, that (vh — Vh)^0 weakly in LP). If
a—>aç we deduce from (16)

<*zJKÂ{s)\2ds < lim inf GK,/),
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whereas sending (3 to (3^ we get

0{SUMi(rH) < limmiG(vh,I).
n40

Inequality (15) is deduced from the last two inequalities by subdividing the interval I into suitable subintervals
(the connected components of a small neighborhood of SUz^ and its complement) and using the appropriate
inequality in each subinterval. Hence (13) holds, and using Fatou's lemma we deduce (12), as

\(Vu(x),O\2 dx + & f \(vu(x),O\dUN-l(x).
JsunA

Inequality (9) therefore holds in the case u G L°°{fl).

Now, if u e Lp(£ï) is not bounded, choose again Uh3^u in LV{Q). Consider uk = {—k V u) A k and
ŵ  = (—k V Uh3) A ky clearly u^ -^uk in Lp(n), so that

F(uk) < limi

But as ƒ is increasing, Fhj(u^) < Fhj(uhj) so that

F(uk) < limi
3^0

If this is finite, we conclude by noticing that lim^^oo F(uk) = F(u) (by (21), (22)); so that the proof of (8) is
achieved. D

Remark. Notice that if UH3^U in L^oc(ü), the result still holds. Indeed, for any i CC O we have Uh3^u in
LP(A) and since the result holds in this case we can write

F(u,A) < liminf Fhj(uhj,A) < liminf Fhs{uh3, Ü).

Then, as F(u,Sl) = supAccQF(u,^4) we get (9). (Thus the Fh also T-converge to F in Lp(ft) endowed with
the LP

OC(Q) topology.)

3.3. Estimate from above of the T-limit

Given u e GSBVioc(ft) H Lp(ft) with F(u) = F(u,Ü) < +00, we want to build uh e £p(tl H KLN) such that
in Lv{Çt) and

( ) < F(u). (17)
hio

In order to be able to assume some regularity on the function u we first prove the following lemma.

Lemma 2. Let u £ GSBVioc{Ü) n LP(Ü) with F(u) < +00. There exists a séquence (uk)k>i Q S BV {ft) of
bounded functions with bounded supports, that are almost everywhere continuons in O and such that

in Lp{ft) as k goes to infinity,
oo F(uk) = F{u).
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Remark. The information on the support of U& makes sensé only when Q, is unbounded.
Proof. For every integer k > 1 let first uk = (—k V u) A k be the truncated of u at level k. We choose in
a minimizer Vk of

LP(RN)

v >-> F(v) + A; etc.

Then,

1 1 /

u(x)\pdx) -K)

as &-»oo, moreover by Lemma 3 (see Appendix A.2) we know that HN 1(ftnSVk \SU) — 0 and Vk € C1 (fi\SVfc ) so
that in particular Vk is almost everywhere continuons. We also have that F(vk) < F(uk) < F(u) and |vfe(ar)| < k
for all x G Q. Set now for every integer n > 1 and xGÎÎ

Vk(%) — — if vk{^) > l /nJ
n

if |fA;0r)| < l/n; and

• + - if '
n

< - l / n .

Clearly Vk,n is still a.e. continuous and goes to Vk in. LP(Q) as n->oo, so that we can choose rik such that
liante - ^ | | L P ( Q ) < l /k . We set tu*. = Vfc,nfc-

We also have SWk Ç 5Vfc,

n . faxEÎÎ : b J x M > l /n^} ;

0 a.e. in the complement,

and

\p dx < +oo

so that in particular Wk € Lq(Q) for any q G [1, +oo].
Choose at last C G Cg^R^) with 0 < C < 1 and ( = 1 on Bi(0), and set for E > 0 and any x G

^fc,iî(^) = C (1) Wfc(z)- For any R,

and if f 6

BR(0)nn

dx+ [
Q\BR(O)

n\BR(o)

do;

dx + ^ |
n\sfl(o)
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with C = 2||VC|||oo(Eiv). Hence

F(wktR) < F(vk) + ( £ <*t<t>(O\t\2) i / \Vvk(x)\2 dx+ -^ [ \wk(x)\2dx
^ J I M ti J

Since wk and Vvk are in L2{p), we can choose R large enough in order to have

F(wktR) < F(vk) + 1 • (18)

Choose Rk large enough so that (18) holds and \\wk,Rk — Wk\\Lp(n) < l/^j and s e t uk = tüfc,fifc- Clearly uk

is still a.e. continuous. Moreover, F(uk) < F(u) + 1/fc» Â; goes to w in Lp{Çt) as fc^-oo, and by Theorem 3
(Appendix A) we deduce that

F(u) < limi
k—>oo

so that linifc-̂ oo F{uk) = F(u) and the lemma is true. D

We now establish (17). First consider the case O = R^. Given u e GSBVioc(R
N)nLp(RN) with F(u) < +oo,

we build invoking Lemma 2 a séquence of compactly supported, bounded and a.e. continuous fonctions uk

converging to u such that F(uk)—^F(u) as k goes to infinity. By a standard diagonalization procedure, if we
know how to build for every k a séquence ((uk)h)h>o converging to uk in ^(R^") as h i 0, such that

limsupFh((uA:)/l) < F(uk),

we will be able to find Uh with Uh^-u and satisfying (17). In the sequel we may therefore assume that u is
bounded, compactly supported, and continuous at almost every x G R" .̂

For y € (0, h)N define u\ e £p(hZN) by uy
h(x) = u(y + x) for any x G /iZN. We compute the mean of Fh{uy

h)
over (0,h)N:

At this point, we exactly follow Gobbino's proof, writing

*H»-HZ) f ds U (M
J- Ju h y
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where uz^(s) = u(z + sÇ) and we have set

for any measurable function v. Since we assumed ƒ$(t) < a^t A t

v(s) — v(s +
h

c, we have

A l

and as shown in [21] by Gobbino, this is less than

provided v G SBViocÇ&) and this expression is finite. (To check this, just compute the intégral separately over
Sv = Uses» is ~ h' sl a n d o v e r R \ Sv •)

Therefore,

h~N f Fh{ul)dy< f dHN~\z)Flh{uZÂ

Thus, for y in some set of positive measure in (0, h)-N,

Fh{ul) < F(u). (19)

For ail h we choose y^ such that inequality (19) holds and set Uh = uff. We check easily that if u is continuous
at x G M^ then w^(a;)^ii(a:) as h J, 0 (since Uh(x) — u(x') for some a;' such that |x — x'| < ^y/Nh). Since u
is almost everywhere continuous, Uh converges to u a.e. in 1SLN. We also have H^/IIIL^CE^) ^ ll^lli/00^^) a nd
the functions Uh, u are zero outside some compact set so that by Lebesgue's theorem Uh^u in LP(MN). Since
clearly, (17) holds for this séquence u^, the proof of the case Çl = WN is achieved.

We now return to the gênerai case where Q is a Lipschitz domain. The method we use in order to localize the
previous resuit is adapted from [11]. We choose a function u G GSBVioc(Q) n LP(O), and once again invoking
Lemma 2 we see that it is not restrictive to assume that u is bounded with bounded support. Since we assumed
that dft is Lipschitz, (and since u is zero outside some bounded set) we can extend u outside of H (using the
same reflection procedure as for instance in [14] for the extension of W1>p functions) into a bounded compactly
supported SBV function (still denoted by u) such that nN~l(dtt n Su) = 0 and F(u,RN) < +oo. Then, we
build (uh) like previously, such that Uh goes to u in LP(MN) and

limsupFh(uh,R
N) < F(u,RN)

We can write

Fh(uh,m
N) > Fh(Uh,nc)
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where ft is the complement of ft in M.N. Notice that we have dropped all terms involving différences of values
of Uh at one point in ft and another in flc. Sending h to zero we get

l imsupi^O^R^) > hmsupFh(uh,n) + liminfFh(uh,Tf),
hio hio >4o

and we deduce from (8) that

limsnp Fh(uh,Ü) + F(u,ïf) < limsupFh(uhiR
N) < F(u,RN).

Thus, u being extended in such a way that F(u,ft ) < +oo,

limsxxpFh(uh,n) < F(u,ïï).
hlQ

Since nN"x(dfl n Su) = 0, F(u,n) = F(u, ft) and we get the thesis. This achieves the proof of Theorem 1. D

3.4. Proof of Theorem 2

For any h > 0 let (uh)h>o be a minimizer in ip(ft n KLN) of

Fh{u) + f \u{x) - g(x)\* dx (20)
Jn

where g e L°°(fy n Lv(ft).
Replacing uh with (-\\g\\L<x>(n)Vuh)A\\g\\L°°(n) we decrease the energy, so that in fact \\uh\\Loo^ < \\g\\Loo(Q).

In view of Lemma 1, since sup^>0 Fh(uh) < +oo, some subsequence (uh3)3>i of (uh)h>o converges to a function
u G SBVioc(ft) a.e. in ft. From the uniform boundedness of the Uh we deduce that Uh3-^u in L^oc(ft).

If \ft\ < +oo, the convergence is in Lp(fl) and we simply conclude invoking Theorem 4 (Appendix B).
Otherwise, we know (by the remark at the end of Section 3.2 and Fatou's lemma) that

F(u) + / \u{x) - g(x)\p dx < liminf Fh3(uhj) + f \uhj (x) - g(x)\p dx.

For any v € LP(Q), we consider {vh3)3>i a séquence converging to v in Lp(ft) such that

limsupFh3(vhj) < F(v).
3^oo

For all j we have that

[ \uh3(x)-g(x)\vdx<Fhj(vhj) + [ \vh3(x) ~
a Jn

so that at the limit we get

F(u) + / \u{x) - g(x)\* dx < F(v) + f \v(x) - g(x)\p dx,
Jn Jn

showing the minimality of u. If we choose v = n, we also deduce that

h3 -g\\Lp(n) = \\u-\
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thus, by equi-integrability, Uh3 -^u strongly in Lp(f2), since we had the convergence in Lfoc(fl). In the case where
we minimize

instead of (20) the proof is not different. G

APPENDIX A. SPECIAL FUNCTIONS OF BOUNDED VARIATION

A.l. The spaces SBV and GSBV: définitions and main properties

In this section we define shortly the "special functions with bounded variation" and state a few properties.
See for instance [3] or [2] for further details. Given Q Ç RN and u : Q—>{—oo, +oo] a measurable function, we
first define the approximate upper limit of u at x G Q, as

= inf Itu+(X) = inf It e [-oo, +oo] : lim Ifa = «(») >'>nB,(*)| =

where Bp(x) is the bail of radius p centered at x and \E\ dénotes the Lebesgue measure of the set E. The
approximate lower limit u-(x) is defined in the same way (Le., u-(x) ~ —(—u)+(x)). The set

Su = {xGQ : u-(x) < u+(a;)},

is the set of essential discontinuities of u, it is a (Lebesgue-)negligible Borel set. If x £ Su, we say that u is
approximately continuons at x and we write û(x) = u~(x) — u+(x) = ap Yxmy^.x u(y).

A function u G L1(Q) is a function of bounded variation if its distributional derivative Du is a vector-valued
measure with finite total variation in ft (equivalently, if the partial distributional derivatives Dtu, i = 1,.. . , TV,
are real-valued measures with finite total variation in Q). The space of functions of bounded variation is
denotedJry BK(Î1). Eor the genera! theory wejef€TJtû_|14,15^20,24}i_If u eJ3V(ÇL}Jthe set^Su is countably
ÇHN-1,N-l)-rectifiable, Le,

oo

Su =

where HN~l(J\f) = 0 and each K% is a compact subset of a C1-hypersurface I\. There exists a Borel function
V%L ' Su—>E>N~X such that %iV"~~1-a.e. in Su the vector uu(x) is normal to Su at x in the sensé that it is normal
to I\ if x e K%. For every u, v G BV(Q), we must therefore have vu = ±i/v H

N~1-&.e. in Su il Sv.
For every u G i?V(£î) the measure Du can be decomposed as follows:

Du = Vu(x)dx + (u+ - u^VuU1*-1 L,Su^Cu

where Vu is the approximate gradient of it, defined a.e. in fl by

tA(y)-u(x)- (Vu(x)iy~x) _
ap nm : : — u,

y H s \y-x\

7iN~11_ Su is the restriction of the TV — 1 dimensional Hausdorff measure to the set Su, and Cu is the Cantor
part of the measure Du, which is singular with respect to the Lebesgue measure and such that |Cu|(ü?) — 0 for
any E with nN-x(E) < +oo.

We say that a function u G BV(fl) is a special function with bounded variation if Cu = 0, which means
that the singular part of the distributional derivative Du is concentrated on the jump set Su. We dénote by
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SBV(£2) the space of such functions. We also define the space GSBV(Q) of generalized SBV functions as the
set of all measurable functions u : fi—»•[—oo, +00] such that for any k > 0, uk = (—k\Zu)Ak G SBV(Q) (where
X A Y = min(X, Y) and I V F = max(X, Y)), following Ambrosio's définition in [Ij.

If u E GSBVioc(ft) n Lloc(Q), u has an approximate gradient a.e. in 12, moreover, as k f oo,

a.e. infi, and |Vwfe| t |Vu| a.e.inH; (21)

SukCSUi H
1*-1^)^^-1^) and i/u*=^ K^-a-cinS^. (22)

Slicing. We consider now for £ G SN~l the sets £•*- = {x e RN '• (£,x) = 0} and for any z e ̂ ±
i

QZ£ = {t E M : 2: + t£ G ^2}. On ftz^ we define a function uZ£ : Î7ZÎ̂ —>•[—00,+00] by w«,̂ (s) = u(z + s^).
If u € 51/(0), we have the following classical représentation (see for instance [1,4]): for 7^Ar"1-a.e. z G ̂ -L,
u ^ G 5^(0^^) and for any Borel set B Ç 12

where BZ£ is defined in the same way as Vtz£\ conversely if uZ£ G BV{Vtz^) for at least N independent vectors
i G SN~X and W^-^a-e. z G £x, and if

L < +00

then u G 5F(12). Now (see [1,2]), if u G SBViodü), then for almost every z G fx, uz^ G SBVioc(^z^) (the
converse is true provided this property is satisfîed for at least N independent vectors £ and u has locally bounded
variation), and the approximate derivative satisfies

for a.e. s G £2JZ,Ç, moreover

Su,i€ = {s G

and for any Borel set B Ç 12

Compactness. Eventually, we mention the following compactness and lower semi-continuity result that is
proved in [1] (see also [2,3]):

Theorem 3 (Ambrosio). Let Q be an open subset ofRN and let (UJ) be a séquence in GSBV(Q). Suppose that
there existp G [l,oo] and a constant C such that

/ \Vuj\2dx + 7iN~1(SUj) + ||itj|Up(n) < C < +°°
Ja
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for every j . Then there exist a subsequence (not relabelled) and a function u G GSBV(£l) n LP(Q) such that

UJ(X)~ÏU(X) a.e. in Q,

Vuj-^Vu weakly in L2(Ü,MN),

J—J-OO

Moreover

HN~l < liminff \{vu

for every £ € S^ 1 .

Remark. In many works (see for instance [3]), according to De Giorgi's original définition, the space GSBV (Q)
is the larger space (hère denoted by GSBVioc(Q)) of fonctions u such that for every k > 0 the truncated uk

belongs to SBV(A) for any open set A CC O, i.e. such that A is compact and contained in Ü. We preferred hère
to specify explicitly when we localize in the space variable by means of the notation GSBVioc. Notice that by
a standard diagonalization technique Theorem 3 extends easily to the case where u3 and u are in GSBVioc(Tt).

A,2. An application: the Mumford-Shah functional

The functional originally introduced by Mumford and Shah, in order to modelize the image segmentation
problem in a continuous setting, is the following

g(u,K) = / \Vu(x)\2dx + UN-*L(K)+ j \u(x) - g{x)\2 dx,
Jn\K Jn

where g G L°°(Ù) is a given "original image", K is a closed set and n G C ! ( ü \ K). Ambrosio and De Giorgi
introduced the^weak formulation in

G(u) = [ \Vu{x)\2dx + ^^{Su) + f \u{x) - g{x)\2 dx,
Jn Jn

and proved the existence of a minimizer for G using Theorem 3. Then, De Giorgi, Carriero and Leaci established
the existence of a minimizer for Q by proving that if u minimizes G, then HiV~1(n Pi Su \ Su) — 0 and
ueC1{Vt\SÛ),so that {ujïû) minimizes Q [13].

Adapting the proofs in [13], we can prove the following lemma (F is given by équation (2)):

Lemma 3. Let g € LP(Q) n L°°(Q) and consider the minimum problem

mm
ueGSBvloc{n)

F{u)+ f \u(x)-g(x)\pdx. (23)
Jn

Then:

• problem (23) has a solution;
• ifueGSBVlöC(Ü) solves (23), then nN~1(Ün^\Su) = 0 and u e G1 (Q \S^).

The existence of a solution comes from a direct application of Theorem 3, once we have noticed that we may
consider minimizing séquences uniformly bounded in L°°(ÇÏ) by [^[^^(O) (so that in fact the solution u is in

)' To get the semicontinuity of the surface term

u
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we use the last semicontinuity inequality in Theorem 3 and Fatou's lemma.
For the second part of the lemma, we notice that F may be written in the following way

f f N-l
Ja Jsu

where for any X eRN,

Q(X) = ~

and

N(X) =

Since <j>{e%) > 0 for i = 1,. . . , TV, Q is a positive definite quadratic form and N is a norm in 1 ^ , and there exist
7,7 ; > 0 such that for any u G SBVioc(&>) and any Borel set B,

This property is sufïicient to adapt the proof in [13] to this particular problem.

APPENDIX B. THE F-CONVERGENCE

We shortly define the F-convergence of functionals (in metric spaces) and its main properties. For more
details we refer to [12].

Given a metric space (X,d) and Fk : X—•[—oo,+oo] a séquence of functions, we define for every u G X the
F -lim inf of F

Ff (u) = T - lim inf Fk (u) = inf lim inf Fk (uk)

and the T-limsup of F

Ftf (u) = F — lim sup Fk (u) = inf

and we say that Fk F-converges to F : X->[-oo, +co] if Ff = F" = JP. Ff, F'\ and F (if it exists) are lower
semi-continuous on X. We have the following two properties:
1. Fk T-converges to F if and only if for every u £ X,
(i) for every séquence uk converging to u, F(u) < liminf^oo Fk(uk);
(ii) there exists a séquence uk that converges to u and such that l i m s u p ^ ^ Fk{uk) < F{u);

2. If G : X—>R is continuous and Fk T-converges to F, then Fk + G T-converges to F -f G.
The following result makes clear the interest of the notion of F-convergence:

Theorem 4. Assume Fk T-converges to F and for every k let uk be a minimizer of Fk over X. Then, if the
séquence (or a subsequence) uk converges to some u G X, u is a minimizer f or F and Fk(uk) converges to F(u).

Eventually, we give the following définition of F-convergence in the case where (Fh)h>0 is a family of func-
tionals on X indexed by a continuous parameter h: we say that Fh F-converges to F in X as h i 0 if and only
if for every séquence (h3) that converges to zero as jf—»oo, Fhj F-converges to F.
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