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INCOMPRESSIBILITY IN ROD AND SHELL THEORIES

STUART S ANTMAN1 AND FRIEDEMANN SCHURICHT2

Abstract. We treat the problem of constructmg exact théories of rods and shells for thm mcom
pressible bodies We employ a systematic method that consists m imposmg constramts to reduce the
number of degrees of freedom df each cross section to a finit e number We show that it is very difficult
to produce théories that exactly preserve the mcompressibihty and we show that it is impossible to do
so for naïve théories In particular, many exact théories have nonlocal effects

Resumé. On considère la construction des théories exactes de poutres et coques pour les corps
minces incompressibles On utilise une methode systématique qui consiste a imposer des contraintes
pour réduire a un nombre fini donne les degrés de liberté de chaque section droite On montre qu'il
est tres difficile de produire des théories qui conservent exactement l'incompressibilité, et que c'est
impossible pour les théories naïves En particulier, de nombreuses théories exactes ont des effets non
locaux
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1 INTRODUCTION

Théories of rods and shells are the characterizations of the motion of thm sohd bodies by fimte numbers of
équations m which there are respectively but one and two independent spatial variables This paper gives a
careful treat ment of methods by wmch such geometrically exact nonlmear théories can account for the mcom-
pressibihty of the three-dimensional bodies they model, exhibitmg the subtle difficulties that anse (such as the
appearance of nonlocal effects), the richness of the resultmg théories, and their strikmg effects on the équations
of motion

We limit our attention to mduced théories of rods and shells, which are constructed by a generahzation
of projection methods used m the numerical solution of partial differential équations that is similar to the
theory of constramts m Lagrangian mechanics We may regard the mduced théories either as approximations
of the three-dimensional theory or as constramed versions of it The latter interprétation has the virtue that
the governmg équations are exact conséquences of the three-dimensional theory obtamed by the imposition of
constitutive restrictions m the form of constramts and by the use of constitutive équations for appropriate stress
résultants (A discussion of convergence for hiérarchies of mduced théories is given by Antman [2] Intrmsic
théories of rods and shells consist m the direct postulation of the respective one- and two-dimensional équations
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The interprétation of the variables in refined versions of intrinsic théories typically relies on an identification
with the variables in induced théories. We do not treat théories constructed by asymptotic methods, for which
Ciarlet [4,5], Trabucho and Viano [10], and the références cited therein should be consulted. In many cases, the
variables that appear in such théories can be identified with those of the induced théories.)

After introducing background material from kinematics, we carefully study the planar déformation of rods.
Then we describe the modifications necessary for the spatial déformation of rods (which is the most difficult
of the théories we encounter hère) and for shells. We conclude by exhibiting some of the governing partial
difïerential équations for incompressible elastic rods and shells. Ail our techniques handle material constraints
other than incompressibility.

2. BACKGROUND AND NOTATION

We employ curvilinear coordinates and adhère to the convention that diagonal pairs of Latin indices are
summed from 1 to 3 and diagonal pairs of Greek indices are summed from 1 to 2.

We study bodies B that are closures of domains. We identify material points of a body B by their positions
z in its référence configuration. We suppose that there is a continuously differentiable invertible mapping
S ^ 4 x(z) e IR3, assigning a triple of curvilinear coordinates x = (xx,x2, x3) to each z in B, such that the
Jacobian

Sx
det — O ) > 0 \fzeB. (2.1)

We dénote the inverse of x by z. The Inverse Function Theorem implies that z is continuously differentiable
and that

j ( x ) = d e t ^ ( x ) > 0 Vxex(£) , (2.2)

The coordinates x range over

A = x(B) (2.3)

as z ranges over B.
We adopt the convention that -^~% = f,k for any function ƒ and we adopt the standard abbreviations

dxk

gk{x) = z,fc(x), gk(x) = — (z(x)), j = (gt x g2) • g3. (2.4)

Thus gk - gt = 5jf, so that the bases {</&} an(^ {9k} a r e dual to each other. (Indeed, j g1 — g2 x g3) etc.)
Let p(z^t) dénote the position at time t of the material point z. We define

p(x,t) :=p(5(x),*). (2.5)

Then the (transposed) position gradient .F, the right Cauchy-Green déformation tensor C, and the Jacobian
det F of the transformation p are given by

3

We dénote the values of kinematic variables in the référence configuration by superposed circles °.

(2.7)
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3. KlNEMATICS FOR RODS

We set x3 = s and take s to be the arc-iength parameter of a distinguished material curve, called the base
curve, with s ranging over the interval [si, s2] as x ranges over A. Without loss of generality, we define the base
curve by x1 = 0 = x2. The material section B(a) of B is the set of all material points of B whose coordinates
have the form (a^x2,^"), ie.,

B(a) = {ze Bi(z) = (x\x2,a)}. (3.1)

We set

A(a) = x(B(a)) = {x e A : x - {x\x2,a)}. (3.2)

We endow B with the minimal rod-like character necessary for our development by requiring that (2.1) hold on
B and that B(x3) be bounded for each x3. In order for the rod théories that we construct to be effective, B(s)
should be small, so that the range of (x1, x2) is small relative to the range [si, 52] of s.

We generate rod théories by approximating the unknown p by an expression involving a finite number of
unknown functions of 5 and t: We assume that there is a (thrice continuously differentiable) function MN x A x
IR 3 (u, y, r) H^ TT(U, y, r) such that

p(x, t)=7r(u(M),x, t) . (3.3)

We shall give numerous concrete examples of (3.3). We regard (3.3) as imposing an infinité number of holonomic
constraints on A(s) 3 (x^x2) 1—> p(x,t) that reduce the number of its degrees of freedom to TV. In the
terminology of rigid-body mechanics, u is the generalized position field for the constrained System. We dénote
partial derivatives with respect to 5 and t with subscripts.

When (3.3) holds, detjP reduces to ö(u(sJt)^us(sJt)^'x.Jt) where

ö(u, w, y, r) := P * W ) x W V ) j ' [{dn/du) • vj
j \y )

where the arguments of the derivatives of n are u,y, r. The requirement that déformations of the form (3.3)
locally preserve volume is that

5(u,u s ,x^) = 1 VxG A Vt. (3.5)

We now show how to incorporate the incompressibility constraint (3.5) into théories of rods based on (3.3).
Because the theory has some surprising difficulties, we proceed from the particular to the gênerai.

The foregoing exposition is a distillation of Sections XIV. 1, 2 of Antman [1].

4. PLANAR DÉFORMATIONS OF INCOMPRESSIBLE RODS

We analyze the mathematica! structure of planar problems for rod théories generated by constraints of the
form (3.3) and subject to the incompressibility condition (3.6). Let {z, j , k} be a fixed right-handed orthonormal
basis. We define the deformed image r of the base curve by

,5,t). (4.1)

In this section we limit our attention to déformations in which r is confined to the {z, j}-plane.
We first study théories in which the constraint (3.3) has the form

pix1, x2,5, t) = r(s, t) + x1^, t)b(s, t) + x2k (4.2)
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where b is a unit-vector valued function lying in the {£. j}-plane. We set

a = cos#i -|- sin# j , 6 = — sin#z + cos0j, (4*3)
r s = z/a + 776.

We take i/ = 1, 77 = 0, ô = 0°, 7 = 1 in the référence configuration. We identify the u of (3.3) with 7, 0, and
the component s of r.

Thus the incompressibility condition (3.5) reduces to

{y - r r V s h - 1 - x19°§ (4.4a)

or, equivalently,

1/7 = 1, 7 2 Ô - = C (4.4b, c)

Condition (4.4b) is to be expected. But (4.4c) is disturbing: It says that the bending measured by 9S is
completely determined by 1/, so that admissible strains are degenerate. In particular, if the rod is naturally
straight, so that 9° — 0, then 9S = 0. This means that the permitted motions of a naturally straight rod are
such that at any instant of time the shear is a constant function of 5. If this shear is zero for all time, then the
permitted motions consist merely in longitudinal stretching measured by v and transverse stretching measured
by 7 = I/IA (Such motions are not without intrinsic interest).

Since \xl\ may be regarded as small, we could regard (4,4b) as a reasonable approximation to (4.4a), and
ignore (4.4c). Before discussing such théories, let us first explain why the difficulty with (4.4c) is to be expected,
and then how to overcome it.

Consider the two-dimensional plane-s train problem of bending an incompressible rectangular block int o a
sector of a circular tube, for which the déformation is given by

p ^ 1 , ^ 2 ^ ) = y/2xl ja + c [cosasi -f sinasj] + x2k (4.5)

where c is a constant. Let h > 0 and let x1 range over [—ft, ft]. The déformation (4.5) does not take the line
of centroids x1 = 0 of the rectangular block into the circle of centroids of the deformed image of the block.
Thus the transverse stretch in the two-dimensional flexure problem is never symmetrie about the material line
of centroids. On the other hand, (4.2) forces this stretch to be symmetrie. This incompatibility is the source of
the adverse conséquences of (4.4c).

We might wish to compensate for the defects of (4.2) by replacing it with a finite Taylor expansion of higher
order in x1. The présence of (x1)2 would destroy the unwanted symmetry. But any given generalization of (4.2)
can easily turn out to be ineffective. For example, let us take

p(x\x2,s,t) = r(M) + [xl-Y(s,t) + ( x Y C M ^ M ) +z2fc- (4.6)

Constructing the appropriate form of the incompressibility constraint (3.5) for (4.6), we find that ( = 0 wherever
9s ̂  0. Thus (4.6) reduces to (4.2). We shall explain the source of this difficulty below.

Let us now try to counteract the defects of (4.2) and (4.6) by replacing them with the most gênerai expression
that is quadratic in xl:

p(z\ x2, s, t) = r(s, t) + a^d^Os, t) + {x1)2d{2io){sy t) + x2k, (4.7)
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where we assume that d(i)0) and d(2,o) he m the {i,j}-plane. The substitution of (4.7) into (3.5) yields the
System

k- [rs x d(1)0)] = 1, (4.8a)

k • [-d(il0) x dsd{m + 2rs x d(2i0)] = 0°, (4.8b)

fc • [2d(2,o) x 35d(i)0) + d(ij0) x 9sd(2)o)] = 0, (4.8c)

k • [d(2|o) x ôfld(2)0)] = 0, (4.8d)

analogous to (4.4). Condition (4.8d) implies that 9sd(2)o) is parallel to d(2,o): There is a scalar-valued fonction tp
(which we take to be continuously differentiable whenever d(2,o) is) such that ôsd(2,o)(si^) =

 '0S(S)^)C^(2,O)(5Ï^)-

Thus

d<2,c»(M) = e^^-^8^dl2i0){sQit) (4-9a)

for some so G [si,S2], so that for each fixed £, the vector d(2,o)(s;^) ^s parallel to a fixed vector. Thus, d(2,o)
either vanishes everywhere or vanishes nowhere. In the former case, (4.7) would reduce to (4.2), which we
have shown to describe a degenerate class of motions. Otherwise, let us impose the very reasonable boundary
condition that the section at SQ be planar. Thus there is a constant unit vector e E span{i, j } such that

)] x e = 0, (4.9b)

whence there are scalar-valued fonctions 71,72 such that

d(i)O)(so,t) = 7i We, d(2|o)(so)*) = 72(*)e. (4.9c)

Then (4.8c) implies that there is a scalar-valued fonction u such that

) = w(s, t)e. (4.9d)

The solution of this linear ordinary differential équation subject to initial condition (4.9c) says that there is a
scalar-valued fonction ÜÜ1 such that d(i)0)(s,£) = o;i(s,t)e; we have already shown that there is a scalar-valued
fonction ÜÜ2 such that d(2)o)(S)*) — oj2{s1t)e. Thus (4.7) reduces to an expression of the form (4.6) with b
a constant. We accordingly conclude that (4.7), despite its generality, is, like (4.2) and (4.6), inadequate for
incompressible materials.

To gain a better understanding of why the incompressible motions permitted by (4.2), (4.6), and (4.7) are
degenerate, we replace them with a generalization that allows our two-dimensional version of (3.3) more freedom
in responding to (3.5):

t) + x2ky (4-10)

where a(0, s,t) — 0 — /3(0, s, t) and where

a = 0 and ^(x1^^) = x1 in the référence configuration. (4.11)

Then the incompressibility condition (3.5) becomes

(1/ - P68 + as)/31 - (7/ + a0s + ft)a,i = 1 - x16°s. (4.12)

This is a single partial differential équation for the two unknowns a and f3. If one of these fonctions is given,
then the other could be found at least locally by the method of characteristics or alternatively, under favorable
regularity, by the use of a Taylor expansion.
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Before discussing the Ml implications of (4.12), let us first impose the severe restriction that a = 0. Then
(4.12) reduces to an ordinary differential équation for /?(-,s,£) whose solution subject to the initial condition
/3(0, s,i) — 0 is the continuous function given by ^ ( x 1 , ^ ) = P(u(s,t)i6s(s1t)ix

1,s) where

Note that /3(1, 0°(?/3),y\?/3) = y1 but that /3 in gênerai is not odd in yl. This (3 can be substituted into (4.10)
to produce a version of (3.3). For / i ^O, the Binomial Theorem implies that

M _

= — + ••• (4.14)

for sufficiently small ly1]. The constraint induced by the choice J3(v, fi.y1^3) = y1 jv is just the approximation
(4.4b) to the actual constraint of incompressibility.

The failure of (4.6), when subject to (3.5), to allow for a rich collection of motions is not at all surprising
because (4.6) has the form of (4.10) with a — 0, and the only form of (4.10) with a = 0 that satisfies (4,12) is
given by (4.13), which is not quadratic in its third argument.

Now let us study (4.10) with the simplest nonzero a, namely, a(xl,s:t) = (x1)2u(sit). (If a were to have
a part that is linear in x1, we could absorb it in the coefficient ƒ? of 6, ie,, 6, which dérives ail its kinematic
significance from (4.10), could be defined as p?1(0, a:2, s, t).) Then (4.12) becomes the following partial differential
équation for /?:

\v - (30s + (xl)2us]f3tl - 2xlu[r] + (x^uOs + &] = 1 - x10°s. (4.15)

Let us seek a solution (3 of (4.15) as a power series j3(x1,s,t) = S^1(^1)/c/3/c(s,t) in x1. Then the f3k are
expressed in terms of the strains z/, TJ^0S)U by the recursions

(j + l)z/^+i - ö, 2 ( 1 + j - k)f3k(3l+3^.k - Ü - l K ^ - i + 2ud,ft_i (4.16)
fe=i

for j > 4.

Note that the f3k are determined uniquely by this recursion and that the series for j3 is typically infinité.
Moreover, (3k dépends on the derivatives of v and u up to order k — 2, and on derivatives of 7] and 0S up to
order k — 3. When the series for /3 is infinité, ƒ3 dépends on an infinité number of derivatives of these strains.

The explanation for this unpleasant occurrence is that (4.12) has a partial derivative of/? in s, and therefore
a solution would typically depend nonlocally on the argument s of u^u^6s. Since (4.12) is a quasilinear partial
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differential équation for /?, its solution would be given locally by the solution of its characteristic équations:

CIT1

— = l/(s)-pes{s)+as(x
1,s),

ds / i x
— = aA(x ,s),

^ = fo(a) + a(x1,s)es(s)]aA + 1 - zx0°(S) (4.17)
ar

satisfying the initial conditions

x1 = 0, S = CT, /3 = 0. (4.18)

Here we have suppressed the argument t7 which is merely a parameter in these équations. We know that given
a, say in the form leading to (4.15), the problem (4.17), (4.18) has a unique solution when \xl\ is sufficiently
small, and this solution dépends nonlocally on s. (In other words, (4.15) is a nonholonomic équation for f3.) In
this case, we handle (4.12) by replacing (4.10) with an expression of the form

p(x1,x2,s,t) =r(s,t) + (xl)2u(Sit)a(s,t)

+ (3[v(-,t)7r1(-Jt),6s(-,t)yu(<,t)yx\s,t}b{s,t)+x2k, (4.19)

where f3 is the solution of (4.12) that vanishes when x1 — 0. In conséquence, the resulting équations of motion
would have this nonlocal character. Thus we have discovered a mechanism by which nonlocality in a spatial
variable can enter continuüm mechanics in a natural way. (Schwab and Wright [9] encountered nonlocality in
their numerical analysis of linearly elastic beams and plates.) We now see why (4.7) is ineffective: It has the
form of (4.10) with an a depending in a special way on x1, and the only form of (4.10) with such an a that
satisfies (4.12) is given by (4.19).

It is clear that these same considérations apply to the case in which a(-,syt) is given as any finite Taylor
expansion with a(0, s,£) = 0, with the coefficients of its powers of x1 together with r and 9 regarded as
constituting the iV-tuple u. Again, we find that f3 must typically be described by an infinité power series in x1.
It therefore follows that in such cases no représentation for TV as a finite power series in x1 can exactly describe
incompressible motions.

We could alternatively prescribe the form of f3 and solve (4.12) for a. In this case, however, there is no
reasonable special case that leads to an ordinary differential équation for a:(-,s,£).

We, of course, can approximate (4.12) by taking a finite series approximation to the infinité series for f3
proposed to solve (4.15). Then our solution (3 dépends on several derivatives of the strains u,r],9Syu. This
approach is a generalization of that which retains (4.4b) but ignores (4.4c) (an approach used in the literature).

Let us describe an alternative way of constructing a finite system of constraints approximating incompress-
ibility, which offers its own difficulties. The requirement that the volume of the material between any pair of
material sections ö(si) and 6(52) be constant when (3.3) holds is

f f Ö(u(s,t),us(s,t),x,t)j(x)dx1dx2ds = f Y 3'(x) dx1 dx2 ds. (4.20a)
JSl JA{S) JSl JA(S)

Since s± and S2 are arbitrary, (4.20a) yields

/ <J(u(sït),us(s,t),xït) j(x) dx1 dx2 = / j(x)dx1dx2 (4.20b)
JA(s) JA(S)
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for all s. To be spécifie, let us adopt (4.2), in which case 6 = 7(1/ — x1~fGs)/(l — xx6°s)1 and (4.20b) reduces to
the constraint

-y(A(s)u - K(s)jds) = A(s) - K(s)e°s(s) (4.21)

where A(s) is the area and K(s) is the first moment of area of the section B(s):

A(s) = f dx1 dx2 > 0, K{s) = [ x1 dxl dx2. (4.22)
JA(S) JA(S)

The constraint (4.21) is an approximation of the incompressibility condition. If K(s) = 0, ie., if r(s) locates
the position of the centroid of the section B(s) in a deformed configuration, then (4.21) reduces to (4.4b).
Otherwise, the situation is more complicated, as we now show. (These other cases are important because for
certain contact problems, it is advantageous to choose r to give the position of a curve on the boundary.)

Since the right-hand sides of (4.20b) and (4.21) are positive, by (2.2), a 7 satisfying (4.21) cannot vanish,
and we can write (4.21) as

v = ^ ( 7 , eB, s) := k{s)0sl + 1 ~ f e ( s ) T O , k := | • (4.23a, b)

Thus for fixed 5, (4.21) or (4.23a) describes surfaces in the three-dimensional space of (1/, 7,6S) that cannot
intersect the plane 7 = 0. Since 7 — 1 in the référence configuration, since we want to limit our attention to the
connected component of the constraint surface that contains the référence configuration, and since 7 represents
a stretch, we take 7 > 0. (In this case, (4.23a) says that v must be positive if k(s)0s > 0.) Let us solve (4.23a)
for 7:

EM (4,4±)

when k0s ^ 0. We obtain 7 = [1 — k(s)9°s(s)\/v if k0s = 0. That 7 must be real means that the discriminant in
(4.24) must be non-negative:

v2 >AkOs{l-k9°s). (4.25)

If k(s)6s < 0, the only positive solution of (4.23a) for 7 (no matter what sign v has) is 7". For k(s)Ôs > 0, both
7 ± are positive. This means that for given v and 6S with k(s)Os > 0, there are paradoxically two transverse
stretches 7 ± with the area of a deformed cross section corresponding to 7 + exceeding that corresponding to 7".

To ascertain the significance of these two déformations, we first observe that a déformation of the form (4.2)
that locally preserves orientation satisfies ô > 0 by définition, so that v — x1/y6s > 0 and 7 > 0 (cf. (4.4a)) for
each x1 for which (x1,^2) G A(s). In particular, if x1 ranges over [h~(s), h+[s)] when (x1,^2) G A(s), then
these inequalities imply that

( if * 5 > 0 ,

if 05<O. K J

To be spécifie, let us suppose that k(s) > 0 and let us fix 9$ > 0. (The treatment for k(s) < 0 and 9S < 0 is

analogous.) Then z^(-, 0Si s), given by (4.23a), has a unique minimum at 7m(0s, 5) :— y~^\Sld° • (Condition

(4.25) merely states that i/N exceeds its minimum.) Let Q~(9§, s) and G+{9S, s) be the graphs in the right half
of the (7, i/)-plane consisting of all points (7,1^(7, 0S, s)) with 7 < 7m(0s, s) and 7 > 7m(05,5), respectively. Let

i s) '-— G~{6s> s) U S+(#s, s) dénote the graph of ẑ "(-, 05, s). Since k < /i+ (under the tacit assumption that
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A has an interior point), the graph G{0s, s) has a unique intersection at 7i(#s, s) := y (h+(s)-k(s))9 w u^ n the line
£,(9** s) whose équation is v = Zi+(s)0<,7. The part of Q lying above C corresponds to those orientation-preserving
déformations satisfying the constraint (4.23a).

If 7i < 7m, ï.e., if 2k < h+, then part of Q~ and all of Q+ lie below £. If 7m < j u z.e., if 2k > h+, then
all of G~ and part of 0+ lie above C. If A is a rectangle of the form {(xx,x2) : h~ < x1 < h+, |x2| < 6}
where 6 is a constant, then 2k = h~ + /i+ . Thus 7X < 7m if and only if Zi~ < 0. If A is a triangle of the form
{(x1,^2) : 0 = h~ < x1 < /i+ , \x2\ < c(h+ - x1)} where c is a constant, then 2k = §fr+, and 7X < 7m . If A is
a triangle of the form {(x1,^2) : 0 =: h~ < x1 < /i+ , \x2\ < ex1} where c is a constant, then 2k ~ | ^ + , and
7i > 7m-

We can now explain the meaning of the two solutions 7^ when k0s > 0: We have approximated (4.4),
which automatically ensures that the déformation (4.2) is orientation-preserving, with (4.21), which merely
ensures that volumes between sections are conserved. We have thus admitted the unacceptable possibility
that the conserved volumes can have négative contributions when 7 is so large that the rays x1 1—»• r(s) +
xlfy(s)b(s) + x2k intersect for nearby s's. (To prevent in well-set problems the occurrence of such orientation-
reversing déformations, which correspond to those parts of G lying on and below £, we must employ constitutive
functions that blow up when 5 \ 0, as is done for compressible materials [1].) In particular, if ^ < 7m, then
any déformation corresponding to 7"1" is unacceptable. (All the effects we discuss for déformations of the form
(4.2) can be illustrated in the simple example of the bending and stretching a uniform straight rod or circular
rod into a circular rod with perpendicular sections.)

Let us now examine the case that 7m < 7^ Hère, for appropriate given values of 1/, 0S, the déformations
corresponding to 7 ± each preserve orientation. Our third example in which A(s) is an isosceles triangle with
vertex on x1 = h~ = 0 and base on x1 = h+ shows why the déformation corresponding to 7+ preserves both
orientation and volume, even though its deformed cross sections are larger than those for 7": The déformation
corresponding to 7+ pushes the wide part of the triangle to a place where it suffers a more severe longitudinal
compression due to the bending, which precisely compensâtes for the increased cross-sectional area.

We cannot déclare one of the solutions 7 ± more natural than the others, because the graphs G±(9s,s) are
merely part of the section 5(#s, s) of the surface defined by (4.23a) to which the strains (u, 0S, 7) are constrained.
Any smooth motion of the rod, corresponding to a classical solution of the équations of motion, générâtes a
curve on the surface defined by (4.23a). If we give (u^0s) their référence values (1,0°) in (4.24), we flnd that j ~
equals its référence value 1 and 7+ = (1 — kOl)/kO° when 2/c0° < 1, and that 7 + equals its référence value 1 and
7~ = (1 — kd°)/k9° when 2k9°s > 1. Thus the branch Q~ or G+ "containing" the référence state is determined
by the parameter k9°s.

There are some pitfalls to be avoided in interpreting these results: Let us take k(s) > 0, 9S > 0, h+ > 0, and
7m < 7i so that certain déformations corresponding to 7 + preserve orientation. If we substitute (4.24+) into
(4.26), then we obtain from a careful computation that

(h+ - k)u2 < (1 - k9°s)(h+)29s. (4.27)

Note that the coefficients on both sides of this inequality are positive. Now consider a one-parameter family
of strains [0,1] 3 r t-ï (z>(5,T)ï0s(s,r),7+(i>(5,r),6's(s,T), s)) in which 9s(s,r) \ 0 as r —> 1. It follows
from (4.27) that v \ 0. This development falsely suggests that there is something inherently unnatural
about 7"1". To see why this conclusion is false, consider an arbitrary one-parameter family of strains [0,1] 9
r H-> (Ï/(S, r), 0s(s, r), 7(s, r)) also beginning at (z/(s, 0), 0s(s, 0), i+{v{s, 0), 0s(s, 0), s)) for which 0s(s, r ) \ 0 a s
r —> 1. The only constraint on this family is that it lies on the surface defined by (4.23a). There are many paths
on this surface by which 9S(S,T) can be decreased to 0. The solution of a well-set problem for the équations of
motion would correspond to one such path. When we require that (4.27) hold, we are effect ively limit ing our
attention to paths of the special form [0,1] 9 r 4 (ï>(s, T ) ,0 S (S ,T) ,7 + ( I> (S ,T) , 0s(s,r), 5)). A study of the way
G dépends on 9Sy as given by (4.23a), shows that these special paths have the property that ï>(s,r) —> 0 and
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7+(Ï>(S,T),0«Ï(S ;T), s)) —» oo as 0s(sJr) —» 0. There is no reason to expect these special paths to correspond to
the solution of any well-set problem with well-behaved data.

An analogous study of the case in which k(s)0s < 0 shows that déformations corresponding to the part
of the graph of z^(-,#s,s) lying below the line given by (4.26) are unacceptable because they do not preserve
orientation. Indeed, when k = 0, so that (4.21) and (4.23a) reduce to (4.4b), there can be orientation-reversing
déformations consistent with this constraint. This possibility (of importance in studies of existence and qual-
itative behavior) arises whenever the incompressibiiity constraint is only approximately satisfied. In this case,
appropriate constitutive assumptions are needed to prevent orientation-reversing déformations.

To refine (4.20b) or (4.21), we simply replace dx1 dx2 in (4.20b) with LÜ(X1) dx1 dx2 where LÜ is any function.
In particular, if we take cufa1) = x1, then in place of (4.21) we get a similar équation with A, K replaced

with K,J where det ( „ , ) > 0. Then this new équation and (4.21) yield (4.4b,c). These same ideas are

applicable to (4.10).

5. SPATIAL DÉFORMATIONS OF INCOMPRESSIBLE RODS

Since the theory for spatial problems is quite similar to that for planar problems, we just sketch the main
ideas, pointing out the places where we encounter new sources of difficulty. The spatial analog of the degenerate
planar représentation (4.2) is generated by the constraint

p{x\x2 ,s,t) = r(s,t) + ip^^d^s^) + <p2(x)d2{s,t),

t), (5.1)

where (f1 and (f2 are given functions with { l ,^ 1 , ^ 2 } independent (e.g., y> (̂x) — xM), and ai and a2 are
unknown unit-vector-valued functions, not necessarily orthogonal. We identify u of (3.3) with component s of
r, di, d2- Let us set

* _ ai x a2

a = as :==
[ai x a2 |

We assume that

a 3 = r°s-> the a°k are orthonormal, 7i = 1 = 72- (5-3)

In this case, (3.5) reduces to

a2) • (rs + ^dsd^) = 1 + tp*a% • dsa^. (5.4)

Using the independence of the ĉ >a, we immediately obtain from (5.4) a set of three scalar équations, independent
of x1 and x2, that restricts the derivatives of the nine independent components of u. But just as in (4.4), these
équations unduly rest riet the flexure of the rod. One could, ho wever, adopt just one of these équations, namely

7i72|oi x a2\a
3 • rs = 1, (5.5)

as an approximation to the constraint of incompressibiiity and obtain a perfectly reasonable theory.
As we have observed in Section 4, a constraint for planar problems of the form

M

m=0
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where M is a positive integer and the d(m,o) a r e taken to lie in the {i, j'}-plane, cannot account exactly for
incompressibility. (Nevertheless, (5.6) leads to useful approximations of incompressibility.) A fortiori^ the
généralisation of (5.6) to spatial problems cannot account exactly for incompressibiîity. This generaîization has
the form

p(x\x2,s,t) = Y, (^)m(x2)M(rn,n)(S,i) (5.7)
(m,n)GZ

where X is a collection of ordered pairs (m,n) of integer s with m > 0 , n > 0 , m + n < M , with M a given
positive integer.

Now (5.6) has 2(M + 1) scalar unknowns. The constraint (3.5) corresponding to it is a polynomial équation
in xl of degree 2 M — 1 and therefore provides 2M restrictions on the unknowns. On the other hand, (5.7)
has §(M + 1)(M + 2) scalar unknowns, and the corresponding (3.5) is a polynomial of degree 3M — 2 in
the two variables x1 and x2 and therefore provides §(3M — 2)(3M — 1) restrictions on the unknowns. For
M — 4, the number of restrictions for the spatial problem (at least formally) exceeds the number of unknowns.
Consequently, there is a limit to the précision that can be obtained for spatial théories not having nonlocal
terms.

Now let us examine what happens to (3.5) when we generalize the constraint (5.1) in analogy with (4.10):

p(x, t) = r{s, t) + a(x, t)as{s, t) + /37(x, t)aT(s, t) (5.8)

where

a(0,0, s, *) = 0 = /^(0,0, s, t) (5.9)

and where

a = 0, /5M(x, t) = </?M(x) in the référence configuration (5.10)

with (5.3) holding. (Without the further restrictions we shall impose on a and /3M, (5.8) has virtually the
generality of (3.3).)

We readily compute (3.5) for (5.8):

(a.ijS^ - a 2iö\)(a3 x a i ) • (rs + aas
s + f32

sa2 + ^ 7â sa 7 )

(atl/3% - a 2j3îi)(a3 x a2) • (rs aa
s

A ^ ^ ^ a2|(a3 • rs + as + ^ 7 a 3 • ôsa7) = 1 + (p7a^ • dsa^ (5.11)

This generaîization of (4.12) is a single first-order nonlinear partial difïerential équation for a,/37 with inde-
pendent variables x and parameter t. We could prescribe any two of these functions to depend on u(s, t),x, i,
where as usual u is a collection of generalized coordinate functions. The resulting équation could be solved at
least locally subject to the initial condition (5.9) by the method of char act eris tics, but, in gênerai, we could
not expect the remaining functions to depend on the pointwise values of r(s, t), a(s, t), b(s, t), u(s, t) and on the
pointwise values of a finite number of their s-derivatives.

The development leading to (4.13) suggests that we might hope to find such a restricted dependence when
a = 0. But in this case, (4.13) is still underdetermined, so we have to restrict 01 and /32 further. To avoid
destroying the intrinsic symmetry between /31 and (32 by prescribing one of these we could restrict each of these
functions to depend parametrically on a single function. Purely mathematical considérations might lead us to
establish such a dependence by assuming that ((3l,p2) and (y1,^2) are isotropic 2-vector functions of (a?1, a;2):
There are functions a^s^r \-> /3(cr, 5, r), y?(a, s) such that

(5-12)
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This restriction on the représentation of the position vector implies nothing about the isotropy of the body
under study, but it does unduly restrict flexural motions just as (4.2) does, because its dependence on the xa

is too symmetrie. This fact can be easily demonstrated directly.
The approximation described in the paragraphs containing (4.20)-(4.26) has obvions analogs for the spatial

déformation of rods.

6. GENERAL CONSIDÉRATIONS FOR INCOMPRESSIBLE RODS

If the rod theory induced by (3.3) is to account for such three-dimensional material constraints as incom-
pressibility, then (3.3) should either identically (or approximately) satisfy the three-dimensional constraint. In
particular, if (3.3) is to describe an incompressible material, then u must satisfy (3.5). For each fixed x, £, this
is the équation for a (27V — l)-dimensional surface in the 2iV-dimensional space of (u, us).

If S dépends on x1,^2 in a fairly simple way, e.g., so that (3.5) can be written as a polynomial équation
in xx,x2, then we can immediately read off from (3.5) an equivalent finite number K of independent explicit
restrictions relating u, us, s, t:

Ki(u,us,s,t) =0,. . . ,KK(u,u s ,s , t) = 0 . (6.1)

In many cases we have found that (6.1) unduly restricts strains and thereby prevents motions that the rod
theory should be capable of describing. A particularly unpleasant version of this difnculty occurs for certain
théories governing the spatial déformation of rods, in which K > TV. A simple remedy for these difEculties is
to select from (6.1) a subset of conditions that do not lead to undue restrictions, at the cost of sacrificing the
exact satisfaction of the constraint. When we use this approach, we présume that (6.1) has been appropriately
reduced. We shall shortly describe methods for handling this reduced version of (6.1).

An alternative remedy for the inconsistencies inherent in (6.1) is to refrain from completely specifying the
form of (3.3) a priori, but let it be adapted to handle (3.5). We followed this strategy in (4.10) and in (5.8).
JWe then found that we could identically satisfy (3.5). in some cases by taking an appropriate form of (3.3) and
in other cases by replacing (3.3) with a représentation for n that dépends on u(-,i), rather than on u(s,t):

p(x,t)=7r*(u(-,t),x,t): (6-2)

We also found that we could systematically approximate (6.2) with représentations of the form

p ( x , t) = 7r*(u(s, t), dsu(s, t),..., ds
Ju(s, t), x , t), (6.3)

where J is a positive integer. (Of course, (6.3) generalizes (3.3).) In these cases, we do not have to concern
ourselves with (3.5): We just substitute (3.3) or (6.2) or (6.3) into the Principle of Virtual Power, as in Section
XIV.2 of Antman [1], and produce in a consistent way the governing équations of motion. (See Sect. 9.)

We now show how to deal with (6.1). We could either retain some or ail of (6.1) as side conditions for
the équations of motion and then introducé corresponding Lagrange multipliers for these side conditions as
described by Antman and Marlow [3] and Antman ([1], Sect. XII.12). Suppose that we retain the last K - M oî
the équations (6.1), 0 < M < K. To treat the remaining first M équations of (6.1), we could, under favorable
circumstances, solve these équations for M component s of u as functions of the remaining component s of u and
of us,s,£. (If the circumstances were not favorable, we could relegate some of the offending équations from
the first M équations of (6.1) to the remaining équations, and reduce M.) More generally, we could introducé
generalized coordinates v so that these M équations would be equivalent to a System of the form

u = u*(v,va,M). (6.4)
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As the development leading to a truncated version of (4.16) indicates, we could obtain an alternative to (6.4) in
which the dimension of v is reduced by having u depend on a different v together with several of its s-derivatives:

u = u*(v,Ôf lv,...,ô/v,M) (6.5)

where J is a positive integer. By substitut ing (6.5) int o (3.3), we ensure that the flrst M équations of (6.1) are
identically satisfied. If we now reinterpret u as v, then we recover (6.3).

7. KlNEMATICS OF SHELLS

We give a brief account of the treatment of incompressibility for shells, emphasizing the features that differ
from those for rods. We construct shell théories in analogy with our construction of rod théories by interchanging
the roles of (x1,^2) with x3. The curvilinear coordinates (x1^2) are assumed to range over the closure M of
a domain in M2 as x ranges over A We now assume that x3 is bounded as x ranges over A For effective shell
théories, x3, which represents the thickness variable, should be small relative to the typical length scales of B.

We generate shell théories by approximating the unknown p by an expression involving a finite number of
unknown functions of xx^x2^t: We assume that there is a (thrice continuously differentiable) function M,N x
i x i 3 ( u , y , r ) 4 TT(U, y, r) such that

p(x,t) - 7r(u(z\x2,£),x,£). (7.1)

When (7.1) holds, detF(x,£) reduces to <J(u(a:1
)a?2,i),u)i(x

1,a;2,t),u,2(£C1,a;2,i),xît) where

(u V! v2 y r) •= {K^/d») • vx + dir/dy1] x [(frr/flu) • v2 + dn/dy2}} • (Ôn/Ôy3)

j(y)

where the arguments of the derivatives of vr are u,y, r. The requirement that déformations of the form (7.1)
locally preserve volume is that

ô(u,utl,ut2,x,t) = l V x e i , Vi. (7.3)

8. INCOMPRESSIBLE SHELLS

Let us set p(x1,x2^0,i) =: r(x1 ,x2,i). For shell théories based upon the constraint

p(x,i) =r(x1,x2,t)+x3d, d = jas (8.1)

where a^ is a unit vector, (7.3) reduces to

(T-,1 X r)2) • d ~ (r,i x r)2) • a37 = 1, (8.2a)
(r,i x d 2 - rj2 x dA) • d = a%tl • a\ - a^2 • a2î (8.2b)

(d i x d 2) • d = {alA x a%t2) • a°3. (8.2c)

Since the planar problems for rods discussed in Section 4 are but special cases of problems for shells, we find
that (8.2) unduly restricts the déformations, just as (4.4) does. In many cases we can be content with imposing
only (8.2a), and using it to represent 7 in terms of the other strains.

The analog of (4.10) with a = 0 is

p(x,t) = r + /3(x,t)a3; (8.3)
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its substitution into (8.1) yields the analog of (4.12):

[(rti x r,2) + (rti x a3)2 - rj2 x a3ji)/3 -h (a3)i x a3)2)/?
2] • a3/? 3

1 1 3 / o o o rf-»^"S » ƒ 3 \ 2 / o . . o \ y» o / o /i ^

This ordinary differential équation for j3 as a function of x3 subject to the initial condition that (3 = 0 when
x3 = 0 can immediately be integrated to define /3 implicitly as the solution of a cubic équation; the typical
complexity of the solution restricts its utility. Even for axisymmetric déformations, (8.4) still yields a cubic
équation for (3.

9. EQUATIONS OF MOTION

The équations of motion for incompressible rods and shells have a mathematical structure quite different from
those based solely on constraints of the form (3.3) or (7.1) as can be expected from the discussion in Section
6. Hère we illustrate this fact for the planar déformation of incompressible nonlinearly elastic rods governed
by (4.10), (4.13) wit h a = 0. For simplicity of exposition, let us assume that external forces are applied only
at the ends of the rods. Then substituting (4.10), (4.13) into the Principle of Virtual Power, as explained by
Antman ( [1], Chap. XIV), we obtain the classical form of the équations of motion:

d f
—dssri(2) + dsn(i) — — ƒ p[rt + {j3uvt + PuOsôb — /39ta\ j dx1 dx2

ut J A(s)
+ TT / P\rt + (0vvt + PJst)b - P0ta] • ((3uba)t j dx1 dx2

ds JA(S)

d2 f
- 7T1ST / aPlrt • à + pvut + ppBstlPv j dx1 dx2, (9.1)

dsdt JA{s)

-dssM{2) + daMw ~ M(o) = - / p[rt + (J3vi/t + (3^0st)b - {30ta} • 0u7]b - pa}t j dx1 dx2

JA(s)

+ 7S / P^ + (P*"* + Mst)b ~ P0ta] • \pvrib - pa] j dx1 dx
öt JA(s)

+ ir [ Plrt + &"t + Mst)b ^ P6ta\ • l^bjt j dx1 dx2

osât • b

where n(i),Ti(2) £ span{ï,j} and M(0),M(1),M(2) are weighted intégrais of the Piola-Kirchhoff stress over a
section and where /5(x) is the given mass density in the référence configuration. For elastic materials, n^ -a,
n(2) * o, Ti(i) * b, Tip) - b, M(o),M(i),M(2) are specified constitutive functions of (ẑ ,77,Ös, vs,r]si9ss,s). The
integrands on the right-hand sides of (9.1) and (9.2) are simple explicit functions of a:1. For sections A(s) of
simple form, the intégrations can be carried out explicitly.

The essential features of (9.1) and (9.2) are that the highest-order partial derivatives, appearing on the
left-hand sides, are fourth derivatives of r and 0 and that the right-hand sides involve spatial derivatives of
second time derivatives. These équations simplify considerably if (4.13) is replaced with its approximation
J3(v, /j,, x1

 y s) — x1 /i/, which corresponds to (4.4b) and if JA/S\ px1 dx1 dx2 — 0 (so that x1 = 0 corresponds to
the mass center of each cross section). Nevertheless, the disposition of high derivatives persists.
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These équations should be contrastée! with those for a compressible nonlinearly elastic rod with the same
kinematic structure. When fA,s\ xlpdxx dx2 = 0, these équations have the form

dsn = (pA)(s)rtu

dsM + (rs x n) • k = (pJ)(s)6tt (9.3)

where (pA)(s) := jApdxx dx2, (pJ)(s) := fA,)p(xl)2jdx1dx2. Here n • a,n • 6, M are given constitutive
fonctions of (i/, rj, 0s,s).

The complexity of the right-hand side of (9.1) can be seen in its specialization to purely longitudinal motions
with concomitant thickness changes for a naturally straight, uniform incompressible elastic rod. In this case,
(4.12) reduces to (4.4b), and r := r i satisfies a scalar équation of the form

-dssN{2)(rs1rss) + d8N{1){rs, rss) = pArtt + pJds[2r~5rst
2 - rjérstt], (9.4)

(See Wright [12]. Saxton [8] analyzed the version of (9.4) in which 7V(2) = 0- His degenerate model, which
implies that no energy is needed to change the thickness from section to section, is not a conséquence of the use
of the Principle of Virtual Power to dérive the équations of motion. In many respects, (9.4) is easier to analyze
than his model.)

10. COMMENTS

In three-dimensional continuüm mechanics, when the Piola-Kirchhoff stress at z,t dépends only on the past
history of F(z, •) and on z, the material is called simple. Thus, in a simple material, this stress dépends neither
on higher spatial dérivâtives of F nor on F at other points. In this case, the équations of motion consist
of a System of three scalar équations in which no derivative of position with respect to a spatial variable of
order higher than 2 appears. If the Principle of Virtual Power is used to produce the équations of motion
for rods (or shells) by invoking (3.3) (or (7.1)) when they are not subject to any material constraint such as
incompressibility and if the three-dimensional constitutive équations are those for a simple material, then the
resulting constitutive équations depend only on u and its first derivative(s) with respect to spatial variables,
(Le., they are constitutive équations for a simple material) and the équations of motion form a System (like
(9.3)) in which no derivative of u with respect to a spatial variable of order higher than 2 appears. On the other
hand, for incompressible materials, our work shows that the constitutive équations for rod and shell théories
are not simple, even when those for the three-dimensional theory are. Moreover, we encounter rod and shell
théories with nonlocal constitutive équations, which we can approximate by constitutive équations involving
higher spatial derivatives.

The difficulties with incompressibility that we encountered in this paper are akin to those that would be
encountered in the construction of finite-element methods for incompressible media described in a material
formulation (cf. Le Tallec [7]). The treatment of incompressibility by finite-element methods has been most
extensively developed for the équations of fluid dynamics, in the standard spatial formulation of which in-
compressibility is characterized by the linear constraint that the divergence of the spatial velocity field vanish
(cf. Temam [11], and Girault and Raviart [6], among others).

Presumably we could construct a rod theory for incompressible bodies by start ing with the three-dimensional
constitutive équations involving the Lagrange multiplier p. In this case, we would have to adopt a représentation
for it like (3.3) that is appropriâtely correlated with that for p. We would still confiront the issue of the
consistency of (3.3) with (3.5).

P.G. Ciarlet proposed the subject of this paper to S.S. Antman many years ago. Antman's work on the research reported
here was siipported in part by NSF Grant DMS9623261 and by ARO-MURI97 Grant No. DAAG55-97-1-0114 to the
Center for Dynamics and Control of Smart Structures.
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