On the stability of solutions of impulsive nonlinear parabolic equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 2, pp. 351-357.
@article{M2AN_1999__33_2_351_0,
     author = {Bainov, Drumi and Minchev, Emil},
     title = {On the stability of solutions of impulsive nonlinear parabolic equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {351--357},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {2},
     year = {1999},
     mrnumber = {1700039},
     zbl = {0939.35024},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_2_351_0/}
}
TY  - JOUR
AU  - Bainov, Drumi
AU  - Minchev, Emil
TI  - On the stability of solutions of impulsive nonlinear parabolic equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 351
EP  - 357
VL  - 33
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_2_351_0/
LA  - en
ID  - M2AN_1999__33_2_351_0
ER  - 
%0 Journal Article
%A Bainov, Drumi
%A Minchev, Emil
%T On the stability of solutions of impulsive nonlinear parabolic equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 351-357
%V 33
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_1999__33_2_351_0/
%G en
%F M2AN_1999__33_2_351_0
Bainov, Drumi; Minchev, Emil. On the stability of solutions of impulsive nonlinear parabolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 2, pp. 351-357. http://archive.numdam.org/item/M2AN_1999__33_2_351_0/

[1] D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter. World Scientific Publishers, Singapore (1994). | MR | Zbl

[2] D. Bainov, Z. Kamont and E. Minchev, Approximate Solutions of Impulsive Hyperbolic Equations. Academic Publishers, Calcutta (1966). | Zbl

[3] D. Bainov and S. Kostadinov, Abstract Impulsive Differential Equations. Descartes Press, Koriyama (1996). | MR

[4] D. Bainov and E. Minchev, Impulsive partial differential equations of first order - (I) Theorems on impulsive differential inequalities. J. Henan Univ. (Nat. Sci.) 25 (1995) 9-18.

[5] D. Bainov and E. Minchev, Impulsive partial differential equations of first order - (II) Stability of solutions and difference methods. J. Henan Univ. (Nat. Sci.) 26 (1996) 1-13. | Zbl

[6] D. Bainov and E. Minchev, Trends in the theory of impulsive partial differential equations. Nonlinear World 3 (1996) 357-384. | MR | Zbl

[7] D. Bainov and P. Simeonov, Systems with Impulse Effect, Stability, Theory and Applications. Ellis Horwood, Chichester (1989). | MR | Zbl

[8] D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations : Asymptotic Properties of the Solutions. World Scientific Publishers, Singapore (1995). | Zbl

[9] D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations : Periodic Solutions and Applications. Longman, Harlow (1993). | Zbl

[10] L. H. Erbe, H. I. Freedman, X. Z. Liu and J. H. Wu, Comparison principles for impulsive parabolic equations with applications to models of single species growth. J. Austral. Math. Soc, Ser. B 32 (1991) 382-400. | MR | Zbl

[11] V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations. World Scientific Publishers, Singapore (1989). | MR | Zbl

[12] E. Minchev and I. E. Okoroafor, Present state of the qualitative theory of the impulsive partial differential equations. Appl. Anal. 1 (1997) 351-369. | MR | Zbl

[13] G. Petrov, Impulsive moving mirror model and impulsive differential equations in Banach space. Communications of the Joint Institute for Nuclear Research, preprint E2-92-276, Dubna, Russia (1992). | MR

[14] G. Petrov, Impulsive moving mirror model in a Schrodinger picture with impulse effect in a Banach space. Communications of the Joint Institute for Nuclear Research, preprint E2-92-272, Dubna, Russia (1992). | MR