Non-trapping sets and Huygens principle
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 517-530.
@article{M2AN_1999__33_3_517_0,
     author = {Benedetto, Dario and Caglioti, Emanuele and Libero, Roberto},
     title = {Non-trapping sets and {Huygens} principle},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {517--530},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713236},
     zbl = {0935.35167},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_3_517_0/}
}
TY  - JOUR
AU  - Benedetto, Dario
AU  - Caglioti, Emanuele
AU  - Libero, Roberto
TI  - Non-trapping sets and Huygens principle
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 517
EP  - 530
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_3_517_0/
LA  - en
ID  - M2AN_1999__33_3_517_0
ER  - 
%0 Journal Article
%A Benedetto, Dario
%A Caglioti, Emanuele
%A Libero, Roberto
%T Non-trapping sets and Huygens principle
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 517-530
%V 33
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_1999__33_3_517_0/
%G en
%F M2AN_1999__33_3_517_0
Benedetto, Dario; Caglioti, Emanuele; Libero, Roberto. Non-trapping sets and Huygens principle. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 517-530. http://archive.numdam.org/item/M2AN_1999__33_3_517_0/

[1] H. Busemann, Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). | MR | Zbl

[2] B. Chow, L. P. Liou and D. H. Tsai, Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. | MR | Zbl

[3] M. C. Delfour and J. P. Zolésio, Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. | MR | Zbl

[4] L. C. Evans and R. F. Gariepy, Measure Theory and fine properties of functions. CRC Press (1992). | MR | Zbl

[5] E. Giusti, Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). | MR | Zbl

[6] E. Makai, Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. | MR

[7] M. H. A. Newman, Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). | MR | Zbl

[8] L. A. Santaló, Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). | MR | Zbl