L (L 2 ) and L (L ) error estimates for mixed methods for integro-differential equations of parabolic type
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 531-546.
@article{M2AN_1999__33_3_531_0,
     author = {Jiang, Ziwen},
     title = {$L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {531--546},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713237},
     zbl = {0941.65143},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_3_531_0/}
}
TY  - JOUR
AU  - Jiang, Ziwen
TI  - $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 531
EP  - 546
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_3_531_0/
LA  - en
ID  - M2AN_1999__33_3_531_0
ER  - 
%0 Journal Article
%A Jiang, Ziwen
%T $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 531-546
%V 33
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_1999__33_3_531_0/
%G en
%F M2AN_1999__33_3_531_0
Jiang, Ziwen. $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 531-546. http://archive.numdam.org/item/M2AN_1999__33_3_531_0/

[1] J. R. Cannon and Y. Lin, A priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27 (1990) 595-607. | MR | Zbl

[2] J. R. Cannon and Y. Lin, Non-classical H1 projection and Galerkin methods for nonlinear parabohc Integro-differential equations. Calcolo 25 (1988) 187-201. | MR | Zbl

[3] L. C. Cowsar, T. F. Dupont and M. F. Wheeler, A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg. 82 (1990) 205-222. | MR | Zbl

[4] L. C. Cowsar, T. F. Dupont and M. F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33 (1996) 492-504. | MR | Zbl

[5] J. Jr. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. | MR | Zbl

[6] E. Greenwell-Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12 (1988) 785-809. | MR | Zbl

[7] M. N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989) 1291-1309. | MR | Zbl

[8] Y. Lin, Galerkin methods for nonlinear parabolic integro-differential equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 27 (1990) 608-621. | MR | Zbl

[9] F. A. Milner, Mixed finite element methods for Quasilinear second-order elliptic problems. Math. Comp. 44 (1985) 303-320. | MR | Zbl

[10] F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem. Math. Comp. 64 (1995) 973-988. | MR | Zbl

[11] E. J. Park, Mixed finite element method for nonlinear second-order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865-885. | MR | Zbl

[12] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lect. Notes Math. 606 (1977) 292-315. | MR | Zbl

[13] R. Scholtz, Optimal L∞-estimates for a mixed finite element method for second order elliptic and parabolic problems. Calcolo 20 (1983) 355-377. | MR | Zbl

[14] J. Squeff, Superconvergence of mixed finite element methods for parabohc equations. RAIRO Modél. Math. Anal. Numér. 21 (1987) 327-352. | Numdam | MR | Zbl

[15] V. Thomée and N. Y. Zhang, Error estimates for semi-discrete finite element methods for parabohc integro-differential equations. Math. Comp. 53 (1989) 121-139. | MR | Zbl

[16] J. Wang, Asymptotic expansions and L∞-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55 (1989) 401-430. | MR | Zbl