@article{M2AN_1999__33_3_531_0, author = {Jiang, Ziwen}, title = {$L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {531--546}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1713237}, zbl = {0941.65143}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_3_531_0/} }
TY - JOUR AU - Jiang, Ziwen TI - $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 531 EP - 546 VL - 33 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_3_531_0/ LA - en ID - M2AN_1999__33_3_531_0 ER -
%0 Journal Article %A Jiang, Ziwen %T $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 531-546 %V 33 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_3_531_0/ %G en %F M2AN_1999__33_3_531_0
Jiang, Ziwen. $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 531-546. http://archive.numdam.org/item/M2AN_1999__33_3_531_0/
[1] A priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27 (1990) 595-607. | MR | Zbl
and ,[2] Non-classical H1 projection and Galerkin methods for nonlinear parabohc Integro-differential equations. Calcolo 25 (1988) 187-201. | MR | Zbl
and ,[3] A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg. 82 (1990) 205-222. | MR | Zbl
, and ,[4] A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33 (1996) 492-504. | MR | Zbl
, and ,[5] Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. | MR | Zbl
and ,[6] Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12 (1988) 785-809. | MR | Zbl
and ,[7] Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989) 1291-1309. | MR | Zbl
and ,[8] Galerkin methods for nonlinear parabolic integro-differential equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 27 (1990) 608-621. | MR | Zbl
,[9] Mixed finite element methods for Quasilinear second-order elliptic problems. Math. Comp. 44 (1985) 303-320. | MR | Zbl
,[10] A mixed finite element method for a strongly nonlinear second-order elliptic problem. Math. Comp. 64 (1995) 973-988. | MR | Zbl
and ,[11] Mixed finite element method for nonlinear second-order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865-885. | MR | Zbl
,[12] A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lect. Notes Math. 606 (1977) 292-315. | MR | Zbl
and ,[13] Optimal L∞-estimates for a mixed finite element method for second order elliptic and parabolic problems. Calcolo 20 (1983) 355-377. | MR | Zbl
,[14] Superconvergence of mixed finite element methods for parabohc equations. RAIRO Modél. Math. Anal. Numér. 21 (1987) 327-352. | Numdam | MR | Zbl
,[15] Error estimates for semi-discrete finite element methods for parabohc integro-differential equations. Math. Comp. 53 (1989) 121-139. | MR | Zbl
and ,[16] Asymptotic expansions and L∞-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55 (1989) 401-430. | MR | Zbl
,