@article{M2AN_1999__33_3_547_0, author = {Levy, Doron and Puppo, Gabriella and Russo, Giovanni}, title = {Central {WENO} schemes for hyperbolic systems of conservation laws}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {547--571}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1713238}, zbl = {0938.65110}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_3_547_0/} }
TY - JOUR AU - Levy, Doron AU - Puppo, Gabriella AU - Russo, Giovanni TI - Central WENO schemes for hyperbolic systems of conservation laws JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 547 EP - 571 VL - 33 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_3_547_0/ LA - en ID - M2AN_1999__33_3_547_0 ER -
%0 Journal Article %A Levy, Doron %A Puppo, Gabriella %A Russo, Giovanni %T Central WENO schemes for hyperbolic systems of conservation laws %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 547-571 %V 33 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_3_547_0/ %G en %F M2AN_1999__33_3_547_0
Levy, Doron; Puppo, Gabriella; Russo, Giovanni. Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 547-571. http://archive.numdam.org/item/M2AN_1999__33_3_547_0/
[1] A Two-Dimensional Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flows, in Proc. 6th Int. Symp. on CFD, Lake Tahoe, Vol. IV. M. Hafez and K. Oshima Eds. (1995) 7-14.
, and ,[2] Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C.R. Acad. Sci. (Paris) Ser. I. Math. 320 (1995) 85-88. | MR | Zbl
and ,[3] A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. IJCFD 9 (1997) 1-22. | MR | Zbl
, and ,[4] Discontinuous Finite Elements and Finite Volume Versions of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flows on Unstructured Grids. Computational Fluid Dynamics Review M. Hafez and K. Oshima Eds., Wiley (1997).
, , and ,[5] High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comp. (to appear.). | MR | Zbl
, and ,[6] Systems of Conservation Equations with a Convex Extension. Proc Nat. Acad. Sci. 68 (1971) 1686-1688. | MR | Zbl
and ,[7] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996). | MR | Zbl
and ,[8] Uniformly High Order Accurate Essentially Non-oscillatory Schemes III. JCP 71 (1987) 231-303. | MR | Zbl
, , and ,[9] A Piecewise-parabolic Dual-mesh Method for the Euler Equations. AIAA-95-1739-CP, The 12th AIAA CFD conference (1995).
,[10] High-Resolution Non-Oscillatory Central Schemes with Non-Staggered Grids for Hyperbolic Conservation Laws. SINUM 35 (1998) 2147-2168. | MR | Zbl
, , , and ,[11] Efficient Implementation of Weighted ENO Schemes. JCP 126 (1996) 202-228. | MR | Zbl
and ,[12] Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comp. 19 (1998) 1892-1917. | MR | Zbl
and ,[13] The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions.CPAM 48 (1995) 235-277. | MR | Zbl
and ,[14] Weak Solutions of Non-Linear Hyperbolic Equations and Their Numerical Computation. CPAM 7 (1954) 159-193. | MR | Zbl
,[15] Towards the Ultimate Conservative Difference Scheme, V. A. Second-Order Sequel to Godunov's Method. JCP 32 (1979) 101-136. | Zbl
,[16] Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhauser Verlag, Basel (1992). | Zbl
,[17] A Third-order 2D Central Schemes for Conservation Laws, Vol. I. INRIA School on Hyperbolic Systems (1998) 489-504.
,[18] Central WENO Schemes for Multi-Dimensional Hyperbolic Systems of Conservation Laws (in preparation).
, and ,[19] Non-oscillatory Central Schemes for the Incompressible 2-D Euler Equations. Math. Res. Lett. 4 (1997) 1-20. | MR | Zbl
and ,[20] Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I. SINUM 33 (1996) 760-779. | MR | Zbl
and ,[21] Weighted Essentially Non-oscillatory Schemes. JCP 115 (1994) 200-212. | MR | Zbl
, and ,[22] Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws.Numer Math. 79 (1998) 397-425. | MR | Zbl
and ,[23] Non-oscillatory Central Differencing for Hyperbolic Conservation Laws. JCP 87 (1990) 408-463. | MR | Zbl
and ,[24] Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. JCP 43 (1981) 357-372. | MR | Zbl
,[25] A High Resolution Staggered Mesh Approach for Nonlinear Hyperbolic Systems of Conservation Laws. JCP 1010 (1992) 314-329. | MR | Zbl
and ,[26] Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comp 5 (1990) 127-149. | Zbl
,[27] Efficient Implementation of Essentially Non-Oscillatory Shoek-Capturing Schemes, II. JCP 83 (1989) 32-78. | MR | Zbl
and ,[28] A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws. JCP 22 (1978) 1-31. | MR | Zbl
,[29] High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SINUM 21 (1984) 995-1011. | MR | Zbl
,[30] Approximate Solutions of Nonlinear Conservation Laws. CIME Lecture notes (1997), UCLA CAM Report 97-51. | MR | Zbl
,[31] The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks. JCP 54 (1984) 115-173. | MR | Zbl
and ,[32] An Artificial Compression Method for ENO schemes : the SLOpe Modification Method. JCP 89 (1990) 125-160. | MR | Zbl
,[33] Natural Continuous Extensions of Runge-Kutta Methods. Math. Comp. 46 (1986) 119-133. | MR | Zbl
,