Mathematical and numerical studies of non linear ferromagnetic materials
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 593-626.
@article{M2AN_1999__33_3_593_0,
     author = {Joly, Patrick and Vacus, Olivier},
     title = {Mathematical and numerical studies of non linear ferromagnetic materials},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {593--626},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713240},
     zbl = {0960.78003},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_3_593_0/}
}
TY  - JOUR
AU  - Joly, Patrick
AU  - Vacus, Olivier
TI  - Mathematical and numerical studies of non linear ferromagnetic materials
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 593
EP  - 626
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_3_593_0/
LA  - en
ID  - M2AN_1999__33_3_593_0
ER  - 
%0 Journal Article
%A Joly, Patrick
%A Vacus, Olivier
%T Mathematical and numerical studies of non linear ferromagnetic materials
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 593-626
%V 33
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_1999__33_3_593_0/
%G en
%F M2AN_1999__33_3_593_0
Joly, Patrick; Vacus, Olivier. Mathematical and numerical studies of non linear ferromagnetic materials. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 593-626. http://archive.numdam.org/item/M2AN_1999__33_3_593_0/

[1] A. Bagneres, Simulation de la structure de parois dans un matériau magnétique. Ph.D. thesis, Institut National Polytechnique de Grenoble (1988).

[2] W. B. Brown, Micromagnetics. Interscience Publisher (1963).

[3] B. Lax and K. J. Button, Microwave ferrites and ferromagnetics. McGraw-Hill book company (1962).

[4] G. Pircher, Ferrites et grenats, phénomènes non linéaires. Dunod (1970).

[5] A. Visintin, On Landau-Lifchitz' equations for ferromagnetism. Jap. J. Appl. Math. 2 (1985) 69-84. | MR | Zbl

[6] A. Haraux, Nonlinear evolution equations - global behavior of solutions. Springer-Verlag (1981). | MR | Zbl

[7] A. Pazy, Semigroups of linear operators and applications to partial differential equations. New York-Berlin-Tokyo, Springer (1983). | MR | Zbl

[8] P. Monk and A. Parrot, A dispersion analysis of finite element methods for Maxwell's equations. SIAM J. Sci. Comp. 15 (1994) 916-937. | MR | Zbl

[9] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations. IEEE Trans. Antennas Propag. 14 (1966) 302-307. | Zbl

[10] J. Pereda, L. Vielva, M. Solano, A. Vegas and A. Prieto, FDTD analysis of magnetized ferrites : application to the calculation of dispersion characteristics of ferrite-loaded waveguides. IEEE Trans. Microwave Theory Tech. 43 (1995) 350-356.

[11] J. Pereda, L. Vielva, A. Vegas and A. Prieto, A treatment of magnetized ferrites using the FDTD method. Microwave and guided wave letters 3 (1993) 136-138.

[12] J. F. Lee and R. Mittra, Analysis of microwave ferrite devices by using the finite element method. J. Appl. Phys. 69 (1991) 5032-5034.

[13] A. Reinex, T. Monediere and F. Jecko, Ferrite analysis using the finite-difference time-domain method. Microwave and optical technology letters 5 (1992) 685-686.

[14] T. Monediere, M. Latrach and F. Jecko, Resonant modes and magnetic losses in a ferrite coaxial resonator. Journal of electromagnetic waves and applications 6 (1992) 199-217.

[15] G. Zheng and K. Chen, Nonlinear study of microstrip lines containing ferrite dielectric layers. Int. J. Infrared Milim. Waves 13 (1992) 1115-1125.

[16] P. Joly and O. Vacus, Numerical simulation of electromagnetic wave propagation in 2D non-linear ferromagnetic materials (in preparation).

[17] P. Joly and O. Vacus, Propagation d'ondes en milieu ferromagnétique 1D : existence et unicité de solutions faibles. C. R. Acad. Sci. (submitted). | Zbl