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DISCRETE APPROXIMATION OF THE MUMFORD-SHAH FUNCTIONAL
IN DIMENSION TWO

ANTONIN CHAMBOLLE1 AND GIANNI DAL MASO 2

Abstract. The Mumford-Shah functional, introduced to study image segmentation problems, is ap-
proximated in the sense of F-convergence by a séquence of intégral functionals defined on piecewise
affine functions.

Résumé. La fonctionnelle de Mumford et Shah, proposée pour l'étude du problème de la segmentation
d'images, est approchée au sens de la F-convergence par une suite de fonctionnelles intégrales définies
sur des fonctions affines par morceaux.
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1. INTRODUCTION

An important rôle in the variational approach to image segmentation problems (see [21-23]) is played by the
Mumford-Shah functional

/ \Vu(x)\2dx + U\SU) + ! \u(x) - g(x)\2 dx, (1.1)
o. JÇI

where O is a bounded open subset of R2 with Lipschitz boundary, u belongs to the space SBV(ft) of special
functions of bounded variation on iï (see Sect. 2), Vu is the approximate gradient of u, Su is the set of essential
discontinuity points of u, H1 is the one-dimensional Hausdorff measure, and g is a given fonction in L°°(Çl).

The main difficulty in the study of this functional is the présence of the length term W}(SU), and many works
have been devoted to the problem of approximating this functional by simpler functionals defined on Sobolev
spaces.

As pointed out in [10], it is impossible to obtain a variational approximation of (1.1), leading to the conver-
gence of minimum points, by means of local intégral functionals of the form

f f£(Vu(x)) dx + [ \u(x) - g{x)\2 dx , (1.2)
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defined in the Sobolev space H1 (Cl). Indeed, if such an approximation existed, (1.1) would be also the variational
limit of the séquence of convex functionals

f fr(Vu(x))dx + f \u(x)-g(x)\2dx,
Jn JQ,

where f** is the convex envelope of f£ (see, e.$.. Prop . 6.1 and Ex. 3.11 in [13]), and would therefore also be
convex. This difficulty can be overcome by intro ducing an auxiliary variable as in the work of Ambrosio and
Tortorelli (see [4,5]), while Braides and Dal Maso [10] recently found an approximation of (1.1) using non-local
intégral functionals.

In this work we consider only the two-dimensional case and present a different solution. We look for ap-
proximations of the form (1.2), put t ing however a restriction on the fonction space on which it is defined. Our
functionals are discrete, in the sense tha t they are defined on continuons piecewise affine functions that depend,
for a fixed e > 0, only on a finit e number of parameters. On the other hand, the approach we propose is different
from the finite-elements approximation introduced by Bellettini and Coscia [7], that is based on Ambrosio and
Tortorelli 's functionals. It is also quite different from the fmite-differences methods studied in [11], although
some similarities exist and will appear clearly in some parts of the proofs.

The new approximation of the Mumford-Shah functional tha t we propose, based on adaptive finite éléments,
is studied in this paper from a theoretical point of view. In a forthcoming paper, Bourdin and Chambolle [9]
address the problem of its numerical implementation, and show how it can be performed. Their. algorithm
alternâtes nonconvex optimization and mesh optimization. The way the optimal mesh is estimated relies a
lot on the construction described in Section 4 and in the Appendix, tha t shows how the triangles need to be
oriented in order to approximate well the energy of a given function.

In order to be more précise we need to introducé a few notations and définitions. A triangulation of O is,
as usual, a finite family of closed triangles whose union contains O and such that , given any two triangles of
this family, their intersection, if not empty, is exact ly a vert ex or an edge common to both triangles. Given
some angle 9Q, with 0 < #Q < 60°, and a function o>(e), with w(e) > 6e for any e > 0 and lim£_>o+ u)(e) = 0, we
define, for any e > 0, 7^(0) = 7^(0,(j ,öo) as the set of all triangulations of O made of triangles whose edges
have length between e and o;(e), and whose angles are all greater than or equal to $o- Then we consider the
set V£(Q) of all continuous functions u: O —»• R for which there exists T E 7^(0) such that u is affine on any
triangle T G T . We fix, like in [10], a non-decreasing continuous function ƒ : [0, +oo) —>• [0, +oo) such tha t

lim ^ = 1 and Hm ƒ(£) = ƒ00 < +oo (1.3)
t»0+ t *—»+oo

(the simplest case is the function f(t) = min{£, ƒ00})3 and we set /x = ƒ«, sinÖ0. Eventually, we fix some
p E [1, +co) and define for every e > 0 the functionals F£ : 27 (0 ) -> [0, +00] and F: Lp(ü) -> [0, +00] by

( 1 [ . , , - , . | 2 « . . ,

= \ e Ja
o , i f i i i

|Vw(x)|2 dx + ^nl(su), if u € 1^(0) n GSBy(o),

(1.4)
+oo , if ii E Lp(0) \ 14(0),

(1.5)

where G S BV (O) is the space of generalized special functions of bounded variation in fi and Su is the jump set
of u (we refer to the next section for the précise définitions). Note that it is not too difficult to check that, for
any e > 0, V£(Q) is weakly closed and that the functional F£ is weakly lower semi-continuous in Lp(ft).

The main resuit of the paper is the proof of the F-convergence, as e —» 0, of the functionals F€ to F.



DISCRÈTE APPROXIMATION OF THE MUMFÖHD-SHAH FUNCTTÖNAL IN DIMENSION TWÖ 653

T h e o r e m 1.1 . There exists a constant Q, with 0 < 9 < 60°, such that, ifO<6o<Q, then the family (F£)

T-converges to F in Lp(ü) as e —> 0.

As a conséquence of this theorem we will then establish the following result.

Theorem 1.2. Let g G £°°(fi), 0 < 00 < 0 , and p > 1. For each e > 0, let ue G Ve(Ü) be a minimizer of

F£(u) + ƒ \u(x) -g(x)\pdx.
Ja

Then, the family (U£)£>Q is relatively compact in Lp(£l) and any limit point u G Lp(£l) is a minimizer of

F(u)+ f \u(x) - g(x)\p dx.
Ja

Remark 1.3. The optimal value for 9 is not known, but the construction in the Appendix will show that
9 > 4 5 ° - a r c t g ( l / 2 ) > 18°.

Remark 1.4. The construction in Section 4 will show that the conclusion of Theorem 1.2 remains valid (includ-
ing the casep = 1) whenthe minimizers u£ are computed under the additional constraint ||ue||i,oo(n) ^ II<7|U°°(£2)-

Remark 1.5. The proofs in this paper may be easily adapted to the following variant. For any triangle T let
KT be the smallest height of the triangle T. If u G V (̂fi) we say that T e 7̂  (fi) is adapted to u if U\T is affine
for any T G T; the set of the triangulations of 7^(fi) adapted to u is denoted by T£{u). If T G T£{u), let Vur
be the gradient of u on any T G T. For any u G LP(Q) we define

), ifu€Ve(O),
( L 6 )

(1.7)
if u G LP(ÎÎ) \ GSBV(n).

Then, Theorems 1.1 and 1.2 hold with G£ and G instead of FE and F, provided w(e) < ce for somc; c > 0
(another possibility is to replace in the above formulas hx with min{/ir, ce}, in which case this constraint on
to(c) is no more needed). In this paper we prefer to use Fe, whose meaning is more immédiate, but the nùmerical
implementation (see [9]) of G£ is much simpler, as a better value of the minimum can be reached even when
the triangulation is not perfectly optimized along the discontinuity sets. Whereas, with the functional Fey the
optimal triangulation must be made of the smallest possible triangles aligned along the discontinuity, as shown
in Section 4.

In the next section we will define precisely the spaces SBV(Q) and GSBV(ft), and give the définition of the
F-convergence. Then the remaining three sections will be devoted to the proof of Theorems 1.1 and 1.2.

2. NOTATION AND PRELIMINARIES

The scalar product of x, y G R2 is denoted by (x,y) and the Euclidean norm by |x|. The open bail
with centre x and radius p is indicated by Bp(x). Given some open set A C M2 and p > 0, Ap is the set
{x G A : dist(x,dA) > p}, where dist(x,dA) is the distance from x to dA. The Lebesgue measure and the
one-dimensional Hausdorff measure of a Borel set B C M2 are denoted by |S | and W}(B), respectively. For the
gênerai properties of the Hausdorff measure we refer to [17,18]. We use standard notation for Lebesgue spaces
Lp(Q) and Sobolev spaces H1^).
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Special functions of bounded variation. For the gênerai theory of fonctions of bounded variation we refer
to [17,18,20,25]; hère we just recall some définitions and results we use in the sequel.

Let A be an open subset of M2 and let u: A —» [—oo, +oo] be a measurable fonction. We say that t G
[—oo, +oo] is the approximate limit of u at x, and we write t = aplimii(y), if for every neighbourhood U of t

we have

lim ±\{y e B„{x) D A : u{y) £ £/}| = 0.

We define Su as the subset of A where the approximate limit of u does not exist. It turns out that Su is a Borel
set and that \SU\ = 0 .

We say that u G Ll(A) is a function of bounded variation if its distributional first derivatives D\u — du/dx\
and D^u = du/dx2 are Radon measures with finite total variation in A. The space of functions of bounded
variation on A is denoted by BV{A). The gradient Du of u is the M2-valued Radon measure Du = (D\u, D2U).

ïïue BV(A), then Su is countably (H1,1) rectifiable, i.e.,

Su=Nö{jKi
i

where W}(N) ~ 0 and (Ki) is a séquence of compact sets, each one contained in a Cl curve IV Moreover,
there exists a Borel function vu : Su —> S1 — {x G M2 : |rc| = 1} such that the vector vu is normal to Su, in the
sense that, if Su is represented as above, then vu(x) is normal to Ti for ?{1-a.e. x E K^. In particular, for every
u, v e BV(A) it follows that vu(x) = ±vv(x) for Wx-a..e. x € SUD Sv.

For every u G BV(A) we have the Lebesgue décomposition Du = Dau + Dsu, where Dau is absolutely
continuous and Dsu is singular with respect to the Lebesgue measure. The density of Dau with respect to
the Lebesgue measure is denoted by Vu. It turns out that for almost every x G A the vector Vu(x) is the
approximate gradient of u, z.e.,

aplim

We say that a function u G BV (A) is a special function of bounded variation if the singular part of Du is
concentrated on Su, ie., \Dsu\(A\Su) = 0. The space of special functions of bounded variation is denoted
by SBV(A). We consider also the larger space GSBV(A), which is composed of all measurable functions
u: A —> [—00, +00] whose truncations uk = (u A k) V (—k) belong to SBV(A') for every k > 0 and for every
open set A! CC A, i.e., with A' compact and contained in A.

Every u G G S BV {A) n LX{A) has an approximate gradient Vu(x) for almost every x G A and

|Vwfc(x)| < \Vu(x)\ a.e. in A,

Vuk{x) —> Vu(x) a.e. in A as A; —>• 00 ,

Suk C S U ) (2.1)

^(S^^^iSu) as fc->oo. (2.2)

The spaces SBV(A) and G55F(A) have been introduced by De Giorgi and Ambrosio in [14], and have been
studied in [1,3].

The following compactness and lower semi-continuity resuit is proved in [1] (see also [3]).

Theorem 2.1. Let A be a bounded open subset ofR2 and let (UJ) be a séquence in GSBV(A). Suppose that
there exist two constants p and C, with 1 < p < +00 and 0 < G < +oo? such that

L n\sUj) + KIUP(A) < c
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for every j . Then there exist a subsequence (not relabelled) and a function u E GSBV(A) such that

Uj(x) —> u(x) a.e. in A,

VUJ -^ Vu weakly in L2(A;R2),

^(Su) < liminf^1 (SUj).

Moreover

f 1 f i
/ \(vu(x),O\iïH (x) < liminf / \(vUj(x)}£)\dHl(x)

for every ( G S 1 .

F-convergence. Let X be a metric space and let (Fj) be a séquence of functions defined on X with values in
[—oo, +oo]. For every u G l w e set (see [15])

Ff(u) = F-liminf Fó(u) = inf{liminf Fj(uó) : uó -> u) ,
j—ïoo j—>oo

Fn(u) = F- limsupFj(u) = infjlimsupFj('Uj). : Uj —> u}-
j—ïoo

Let F be a function defined on X with values in [—00, +00]. We say that (Fj) F-converges to F in X if
Ff — F!f — F in X. This means that for every u £ X the following two conditions are satisfied:

(a) for every séquence (UJ) converging to u we have F(u) < liminf FAuj)\

(b) there exists a séquence (UJ) converging to u such that F(u) = lim FJ(UJ).
j—>oo

It turns out that the functions Ff and F" are lower semi-continuous on X. For the main properties of
F-convergence we refer to [6,13,15].

Let (F£)e>o be a family of functionals defined on X with values in [—00, +00] and let F : X —¥ [—00, +00].
We say that (F£) F-converges to F in X as e -ï 0 if (F£j) F-converges to F in X for every séquence (CJ) of
positive real numbers converging to 0 as j —> 00.

3. ESTIMATE OF THE F-LIMIT FROM BELOW

We now return to the problem introduced in Section 1. In order to prove Theorem 1.1, we will first show
that the F-liminf of the family (F£)£>Q is greater than or equal to F. Then, in the next section, we will show
the opposite inequality for the F-limsup.

For every open set A C ü and for every e > 0 we consider the following "localization" of Fe:

+00 , if u <

We choose an arbitrary séquence of positive numbers (CJ) converging to 0 as j —> 00, and we set

F ' (u, A) - F- lim inf F£, (u, A)
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for every u G Lp(ft) and every open set A c d . We wish to prove that

> [
Jn

for any u G Lp{0) n GSBV(Çl). In order to do so we use the same localization technique as in [10]. The first
step will be to establish the following resuit.

Proposition 3.1. Let u G Lp(£l) and let A be an open subset of Q, such that Ff{u^A) < +oc. Then u G
GSBV(A) and

nl(SuC\A) < +oo, (3.2)

F'{u,A) > f \Vu{x)\2àx, . (3.3)

Ff{u,A) >»[ \(uu{x),0\àU1{x) (3.4)

for every £ G S1.

We point out that given u G LP(Q), the set functions A i-> F£(u,A) are increasing and super-additive, and
thus the set function A M> Ff(u} A) is also increasing and super-additive:

(i) F'(u,Ai) < Ff(u,A2) whenever Ax G A2 d Ü',

(ii) F'(u, Ai U A2) > Ff(u, Ax) + Ff(u, A2) whenever Ax n A2 = 0.

The next corollary is a conséquence of this remark and of the previous proposition.

Corollary 3.2. Let u G Lp(ft) and let A be an open subset ofQ such that F'(u, A) < +oo. Then u e GSBV(A)
and

F'(u,A) > f \S7u(x)\2dx
JA

We will not give the proof of this corollary, since it is identical to the proof of the similar Proposition 6.5 in [10]
(see also Lem. 4.1 (iii) and Prop. 4.3 in [1], or Lem. 2.4 in [8]).

Our task is now to prove Proposition 3.1. This proof will be split into two parts: first we will show (3.2, 3.3),
that will be deduced quite easily from next Proposition 3.3; later on, as a conséquence of Proposition 3.4, we
will establish inequality (3.4).

Proposition 3.3. For every S > 0 we can détermine two constants cô, c
f
ö > 0 such that, for every e > 0; for

every u G V£(Q), and f or every open subset A ofQ, there exists v G SBV(£l) with

/ \Vv(x)\2dx + CsH^SvnA^KF^A), (3.5)

\{xttt: v(x) ï u(x)}\ < cf
5 eFe(u, A). (3.6)

Proof Let us choose ö G (0,1). From the properties of the function ƒ, there exists a constant c, with 0 < c < /oo,
such that

ƒ(*) > min{(l-<J)t,c}

for ail t > 0. Let u G V£(Q) and assume Fe{u^A) < -hoo (otherwise the resuit is obvious), and let T G 7^(fi)
be a triangulation such that U\T is affine for any triangle T G T. For each of these triangles T let VUT be
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the (constant) gradient of u on T. Observe that, letting TA = {T G T : T C A}, we have

F£(u,A) = ^ | T n A |

l c } (3.7)

\T\mm{(l-S)\VuT\2,-£}-
TeTA

Let Ti = {T € T A : (1 - ö)\VuT\2 > c/s} and T2 = T A \ Ti, and define v in the following way:

{0, on every T E Ti,
u, on every T e T \ T i .

Clearly, v G SBV(Ü) and each point of Sv belongs to the boundary dT of some triangle T G Ti; moreover,

\{xeCl:v(x) * u(x)}\ < £ |T| <

where the last inequality follows from (3.7), so that (3.6) holds with cf
s = l/c.

By assumption the edges of the triangles of T have length greater than or equal to e and their angles are
all greater than or equal to 6Q, SO that the heights of such triangles must be greater than or equal to
Therefore, if T G T,

so that
j\T\ >

if cô = (csin#o)/6. Moreover, since the edges of each triangle T G T have length less than or equal to u>(e), we
also have that T n AJ(£) ¥" 0 implies T c i , thus

(l-S) f \Vv(x)\2 dx + cs H'iSvDA^) < (l-ö) ^ \TnAu(E)\\VuT\2 + cs ^ H1 (ÔT n Au{e))
JA»(e) TeT2 TGTi

by (3.7), so that (3.5) holds and the proof Proposition (3.3) is achieved. •

Proof of (3.2, 3.3). Let now u G Lp(ü) and assume that F'(u, A) < +00 for some open set A C Cl. We consider
an arbitrary séquence (UJ) such that Uj —> u in Lp(fi) and liminfj F£j (UJ,A) < +00. Without loss of generality
we may assume (possibly extracting a subsequence) that sup̂ - FEj {UJ7A) — c < +00. Let us fix 6 G (0,1). For
any j , Proposition 3.3 provides a function Vj, that satisfies (3.5, 3.6) (with u = u^ v = Vj, and e = Cj). Choose
an arbitrary truncation level k > 0 and define

v* = (-kW Vj) Ak and Uj = (—k V Uj) A k .

Clearly, uj -^ (-fe V u) A *; = wfc in LP(Q) (thus in ^(f ï)) as j -+ 00, moreover by (3.6)

L < 2kc/
ôEjF£j(uj,A) <
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so that y* also converges to uk in L1(fi).
Let 77 > 0. By (3.5)

(1-5) f iVvtixtfdx + csH^S^nAv) < F£j(UjiA) < c

as soon as Av C A^e^i that is to say, when j is large enough, and by Ambrosio's Theorem 2.1 we deduce that
uk G SBV(AV) and

( 1 - * ) / \Vuk(x)\2dx^-c5n
1(SuknAv) < limmfFe.iuj.A).

As 77 and the séquence (UJ) were arbitrary, we conclude that uk G SBV(A) and

(1-5) f \Vuk(x)\2dx + cóH
l(SuknA) < Ff(u,A).

JA

Sending k to infinity and invoking (2.1), we find that the same inequality holds replacing uk with u, There-
fore (3.2) holds, and letting S go to zero we also get (3.3). D

We now concentrate on the length term, and will prove the next proposition, from which (3.4) will follow.

Proposition 3.4. For every Ö > 0 we can détermine three constants c5, c'â, d
!
à > 0 such that, for every e > 0,

for every u € V£(Q), for every £ G S1, and for every open subset A ofQ, there exists v G SBV(Q) with

f UïïdHHx) < Fe(u,A), (3.8)

S.n^) ) < Fe(u,A), (3.9)

\{xeSÏ:v(x) ^ u(x)}\ < $eF£(uyA). (3.10)

Proof. The function v will be constructed from u more or less like in the proof of Proposition 3.3, but this time
we will need to describe more precisely the way we "eut" the triangles with large gradient. Hère, again, we
choose ô e (0,1), and from the properties of the function ƒ we find a constant c, with 0 < c < 1, such that

f(t) > min{ct,(l-*)ƒ«,}

for ail t > 0. We consider some function u G V£(Q) with Fe(u^A) < +00, a triangulation T G 7^(fi) such
that u is affine on any triangle T G T, and we still write Vur for the gradient of u on T. We also set
TA = {TeT:TcA}.

Let a = y/(l — ô)foo/c; we now classify the triangles T G T^ into four catégories, depending on the slope of
the function u along the edges of T:
• To is the set of triangles T G TA such that, along ail three edges of T, the slope of u is less than or equal to

• for each i = 1,2,3, T* is the set of the triangles T G T^ such that the slope of u is greater than crf-y/ë along
exactly i edges of T.
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We make the following remarks.

Remark 3.5. If T is a triangle with ail three angles greater than 90 and if w : T —> R is an affine function such
that the slopes of w along at least two of the edges of T are smaller than some constant K, then

|Vtü| < K ^ - • (3.11)
! ' ~ smÖo

Indeed, we may always assume that one of these two edges is along the horizontal o î-axis of the plane while
the other is along some vector (cosô, sin0), with QQ < 6 < n ~ 20o, so that sin# > sin#0 > 0. By assumption,
\Diw\ < K and |JDIIÜ COS0 + D2W sinÔ| < K, Thus, \D2w\sm0 < K + \Diw\ < 2K and

sm 6

hence (3.11) holds. In particular, we notice that if T € To U Ti, then

(3.12)

Remark 3.6. If ce\VuT\2 < (1 - 5)/oo for some T G TA, SO that |Vur| < o"/v^» t n e n clearly T 6 To, since
the slope along any edge is less than or equal to the norm of the gradient.

•
Proof of Proposition (3,4)- As in (3.7) we can write

Fe(u,A) > y: Ç~=

where the last equality follows from Remark 3.6. Combining this with (3.12), we find

Fe(u,A) > c' E |r| iV ẑ̂ l2 + (1-6)»
T€TA\To

with c' = (c sin2 0o)/5. We will construct the function v by modifying u in each triangle of T A \ T 0 = T1UT2UT3.
In all the other triangles T € To U (T \ TA) we first set V\T = V>\T, SO that (3.10) holds exactly in the same way
as (3.6) in Proposition 3.3, with c£ = 1/(1 - ö)foo. Then, in order to obtain also (3.8, 3.9), we need to define
the new function v in each triangle T e Ti U T2 U T3 in a way that for any such T,

\T\ f ,, , x ., 1

'. ' > / IWvfàtOlàtëix), (3.14)
esinÉ^o Js,nAu ; ( Ê )nT

and

ITI f

> c5 ƒ |V^(x)|2dx + cf
8U (Sv n Aw(e) nT) • (3.15)

for some suitable constants c5 > 0 and cf
ö > 0.
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We now can detail how v is constructed in each one of the three cases T G Ti, T E T2 î and T G T3. The
idea will be the following: on the edges of the triangles of T^ along which the slope of u is low (i.e., less than
or equal to a/y/ë), v will be equal to u, whereas on each edge along which the slope is high (z.e., greater than
a/y/ë), v will be piecewise constant, assuming the two values of u at the vertices of the edge and "jumping" in
the middle.

Case T eT2. Call xi, x2y £3 the vertices of T and assume that the two edges on which the slope of u is larger
than a/y/ë are [xi,x2] and [x2,#3], te., <

\u(x2) - it(xi)| a \u(x3) - u(x2)\
— > —= and ; >o:3-o:2 | y/ë'

while
\u(xs) — u(xi)\ a

X$ — X\\ ~ y/ë

Call then X12 the middle point of [xi,x2] and o:23 the middle point of [0:2,0:3]. We "eut" the triangle along the
segment [0:12,0:23] and define v(x) on each side of this segment. On the "small" triangle [0:12,2:23,0:2], we set
v(x) = u(x2), and on the quadrangle [0:1,0:2,0:23,0:12] we choose a suitable continuons function v such that
• v is constant, equal to u(xi) (resp., ^(0:3)) on [0:1,0:12] (resp., [0:3,0:23]);
• v is affine, on [xi,X3] and [xi2,X23].

A good choice is to take v affine on each triangle [xi, £23, £12] and [2:1,0:3,0:23], with the above mentioned
boundary conditions. In this case it is simple to estimate the norm of the gradient of v, since the slope of
v is zero on [xi,xi2J and [0:3,0:23] and less than a/y/ë (resp., 2a/y/ë) on [xi,X3] (resp., [0:12,0:23]). Adapting
Remark 3.5, we get

Actually, using the fact that the slope is zero on [0:1,0:12] and [0:3,^23], we could estimate better the gradient in
this particular case and show that it is bounded by 2a/(sm9oy/ë).

Since the area \T\ is equal to the length of [xi2, X23] multiplied by the corresponding height, which is greater
than e sin ÖQ ? the length of the eut we have made satisfies

while

L, |Vi;(x)|2do: < | r | - ^ — - —=^— ( 1 - 5 ) M - ^ V ' (3-18)
T ^ sin 9Q C sin OQ £ sin v0

Case T G T3. This time the slope of u is above the threshold a/y/ë along all three edges of T. We use the
same notation as in the previous case, assuming moreover that xi, X2, and 0:3 are ordered in the sense that
(xiiC^) — ( X 2ÏC X ) ^ ix3^±)j where Ç1- is one of the two vectors in S1 perpendicular to £. We call 2:13 the
middle of [0:1,0:3], notice that X12, 0:13, and 2:23 are also ordered:

;x) • (3-19)
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We eut the triangle T along [#12, £13] U [£13, #23], and choose v to be piecewise constant in T:
• v = u(x!) in [a;i,a;i2,a;i3],
• v — u(x2) in [x12,Xi3,X23,x2],
• v = u(x3) in [a:i3,2:23,^3]•

Here-Vt; = 0, while the lengt h of the eut satisfles

^ (3.20)2
e sin #o

(see the proof of (3.17)). Moreover, if we dénote the vectors #13 — #12, £23 — £12> and x2z — £13 by si , 52, and
53, respectively, we have by (3.19),

< \S2\ = H\[X12,X23]) < J ^ _ ' (3.21)

Case T G Ti . In this last case, we eut the triangle as in the previous case so that we will also rely on
estimâtes (3.20, 3.21) for the length terms. The différence is that we can not define v to be constant in all
three connected components of T \ ([#12, £13] U [xi3, £23]), as this time we need it to be affine (and equal to u)
along the two edges on which the slope of u is below aj\fë. The solution is to take v affine in each connected
component of T \ ([#12, £13] U [213, #23]), with the correct boundary conditions, namely, v ~ u on the two edges
where the slope is below the threshold, and, if [a^Xj] (1 < i < j < 3) is the third edge, v = u(xi) on [a ,̂ a:̂  [
and v = u(xj) on ]xij, Xj]. On each connected component, v is the restriction of some affine function defined on
T that has a slope less than cr/^/e on at least two edges of the triangle. Thus, by Remark 3.5, inequality (3.16)
and its conséquence (3.18) hold also in this case.

In this way, we have constructed a function v G SBV(£l) such that Sv is made of the cuts we introduced in
the three above mentioned cases, to which me must add the boundary of the union B of all triangles T € TA
(to be more précise some subset of this boundary). But, by assumption, Aw(e) C intS, so that Aj(e) H 9B — 0.
Prom (3.17, 3.21) we deduce (3.14), while (3.15) follows from (3.17, 3.20, 3.18), if we choose for instance
cô = c(sin2 #o)/4O and d6 = (1 --<$)/i/4. Then, we deduce (3.8) from (3.14), while (3.9) is a conséquence of (3.13,
3.15). The proof of Proposition 3.4 is complete. D

Proof of (3.4). Inequality (3.4) is deduced from Proposition 3.4 exactly in the same way as (3.2, 3.3) follow
from Proposition 3.3, and we will not repeat the proof here. Just notice that, this time, the last semi-continuity
inequality in Theorem 2.1 has to be used, as well as the fact that for any truncation level k > 0 and any
u G GSBV(Ü) we have Suk C Su and thus vuk{x) = i/u(x) for 'H1-almost all x e Suk.

The proof of (3.4) achieves the démonstration of Proposition 3.1. D

Remark 3.7. Note that in this section we have assumed only that 0 < 90 < 60°. The maximum angle 0 will
appear only in the next section, where we find an upper bound for the F-limit of F£.

4. ESTIMATE OF THE T-LIMIT FROM ABOVE

As in the previous section, let us fix a séquence of positive real numbers (SJ) which converges to 0 as j —» 00.
For every u e LP(Q) we define

F"(u) =r-limsupF£j(u).
3—>oo

In this section we will prove the following proposition, which, together with Corollary 3.2 concludes the proof
of Theorem 1.1.
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Proposition 4.1. There exists a constant Qf with 0 < Ö < 60°, such that, ifQ<9o<Q, then

F"(u) < [ \Vu{x)\2àx + nU\Su) (4.1)
Jn

for any u G LP(Ü) D GSBV{Q).

In order to obtain this estimate we need the following lemma, where the hypothesis that Çl has a Lipschitz
boundary plays a crucial rôle. We use the notation Dau = D^D^u = dOil+Oi2u/dcclXida2X2 for every multi-
index a = (ai,a2) G N2.

L e m m a 4 . 2 . Letu G SBV'(fi)nL°°(fi), with JQ \Vu\2 dx + K 1 ^ ) < +oo, and let Ü' = (a,b)x(c}d) C M2 be
an open square such that fi CC O'. Then u has an extension v G SBV(Çl') n L°°(fi') 5nc/i ifeoi Jn, | V^|2 dx +

}

o ) (4.2)

and 11̂ 111,00(0') — HttllL00^)- Moreover, there exists a séquence (vk) in SBVfâ) r\L°°(flf) converging to v in
Lp(Qf) as k —ï oo; and f or any k, rrik disjoint closed segments L±y..., L^fc CC fî7, with the following properties:

Vvk -> Vv strongly in L2(fi'; R2), (4.4)

% and V}(SVk \SVk) = 0, (4.5)
2 = 1

mk

lim y^n1(L^)=n1(Sv). (4.6)

Eventually, we may extend each vk to the whole plane into a compactly-supported function and assume that it
is regular, in the sense that vk G C°°(M2 \ (Jl^i ̂ i)> and for any multi-index a = (0:1,0:2) G N2 the partial
derivatzve Davk is continuous at each end point of the segments L^} while for any (relative) interior point
x G L1? the function DaVk is uniformly continuous in each one of the two connected components of the set
Bp(x) \ L\ for p is small enough (in particular it admits a finite limit at x from both sides of'Lfj.

Proof We refer to the proof of Theorem 3.9 in [12], which is based on the approximation resuit obtained
in [16]. D

The regularity we need in the sequel for vk is just vk G W2>°°(WL2 \ IJ^fi ^t)-

Proof of Proposition 4-l> Since u \-ï F/f(u) is lower semi-continuous in £p(fi), by (2.1) it is enough to prove (4.1)
for a bounded function u G L°°(fi) n SBV(Q). Lemma 4.2 provides a function v G L°°(fi') H SBV(üf) equal to
u on fi, with V}{SV Pi <9fi) = 0. Assume we can construct a séquence (UJ) with Uj G Ve. (fi') for all j , Uj —ï v
in Lp(Çtf) as j —> oo, and

f 1 f
limsup / — f(€j\Vuj(x)\2)dx < / \Vv(x)\2 dx + /zW 1 ^) . .(4.7)
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e sin 0O (

FIGURE 4.9. The smallest possible triangle T has height esinöo- lts longest edge has length
e' — 2ecosöo-

Using Corollary 3.2 we obtain

limsup / — f(£j\S7uj(x)\2)dx > limsup / — f{ej\Vuj{x)\2) dx + liminf ƒ _—f(ej\Vuj{x)\2)dx
j-^oo JQ' £j j^oo Jçi £j 3^°° Jn<\n ej

f Vv{x)\2 dx ^r ixU1{Svn{Üf \Tt)).
Jn>\n

Therefore (4.7) gives

"(u) < [
Jn

F"() [\
Jn

so that (4.1) holds, since Ü has a Lipschitz boundary and Hl(Sv D 8Q) = 0..
By a straightforward diagonalization argument, it is enough to construct the functions Uj E V^.(n') when

v that has the regularity of the functions Vk of Lemma 4.2. We will therefore assume that v is defined in the
whole plane, has compact support, and that there exist m disjoint closed segments in £7', L i , . . . , Lm , such that
~Sv = Ulli Lu T-^ÇSy \ Sv) = 0, and v e W2'°°(R2 \U2=i Lù\ i f öo is not too large, we will construct a séquence
of functions Uj e V£j (O') such that Uj —> v in Lp(üf) and

limsup/ —/(ej|V«j(x)|2)dx < / |V^(a:)t2d^ + / / V ? { 1 ( L l ) . (4.8)

i-̂ oo Ja* £j Jçi' ~{

Construction of the séquence (UJ). Let e'j = 2ej cos6Q,

d = min{dist(Liï Lfc), dist (Li, dü') : 1 < i < k < m} > 0,
and choose j large enough so that e^ < d/10. We now explain how we construct the triangulation on which Uj is
defined. In order to simplify the notations we will drop the subscripts j in the sequel, when it is not ambiguous.

Let f be the triangle with minimal height admitted in a triangulation of %(ftf). T is defined up to a
translation and a rotation, and is the isosceles triangle shown in Figure 4.9, with two edges of length e, and two
angles equal to 60. The longest edge of this triangle has length ef = 2£cos0O) and the shortest height is £sin#o-

We first cover each discontinuity set Li with an odd number of triangles T, as shown in Figure 4.10. If Ni is
the integer part of %l (Li)/ef, the segment Li can be covered by a strip of width e sin 00 made of exactly 2Ni + 1
triangles, and the total surface of this strip is estimated by

(2JV, + i ) ^£ | ^o < £sin9o(ni{Li) + I / j . (4.9)
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angle > arctg \

FIGURE 4.10. Each Li is covered with 2Ni + 1 minimal triangles, the whole strip is then
included in a larger rectangle Ri of size (Ni + l)ef x 2e''.

By adding triangles and squares of side ef (further divided into triangles by cutting along a diagonal), we can
include this strip in a larger rectangle Ri (see Fig. 4.10), with a "short" side of length 2ef and a "long" side of
length (Ni + l)sf, and exactly 2Ni + 6 external vertices (or nodes) on dRi, that we will have to link to some
triangulation of Cl' \ Ri,

Provided 6Q < arctg (1/2), all the angles of the triangles we have drawn so far are larger than 8Q, whereas
the length of the edges of these triangles are clearly greater than e.

We repeat this construction for each i = 1, . . . , m. We also dénote by Ri the "enlarged rectangle" Ri) i.e.,
the (open) rectangle of size (Ni + 3)e' x 4s' that contains the set {x G £lf : dist(:r, Ri) < sf}. Notice that the
condition ef < d/10 ensures that none of the rectangles Ri intersects another one or the boundary of Q'.

We now consider on Q,* \ UÜLi ̂  a regular triangulation based on the squares [ke', (k + l)ef] x [le\ (l + 1)£;],
fc,Z G Z, that intersect Q' but do not touch any of the Ri, each square being then eut into two triangles,
along a diagonal. The condition ef < d/10 ensures that each Ri is "isolated" in the complement of this
triangulation (as it is easy to check that dist(i^,it!fc) > 3^ whenever i ^ k, and dist(JRi,ö0/) is even larger).

- We can thus describe independently how the external nodes of each Ri have to be connected to the regular
"background" triangulation, in order to obtain a global triangulation T of Q,f that belong to 7^(0'). This is
done in the Appendix. We describe a particular algorithm that shows how to connect the two triangulations,
by drawing new triangles whose edges have length between ef and 3e' < 6e and whose angles are ail greater
than 45° — arctg (1/2). Therefore, provided 0O < 45° — arctg (1/2), the global triangulation we construct in this
way is in 7^(^')*

We define Uj as the Lagrange interpolation of v on T, i.e., Uj is affine in each triangle T G T, taking the
same values as v at the vertices of T. A vertex of T might not belong to fi', but we remind that v is defîned in
the whole plane. By Theorem 4.4-3 in [24], since the length of the edges of any T G T are less than 6e and the
largest disk contained in T has diameter greater than 2ecos0otg(#o/2), there exists a constant C(0Q) such that
for any such T with T n U™ i Li = 0,

(4.10)

where D2v is the vector whose components are the second order partial derivatives of v. Let Tj = {T
T n U l i ^ = 0}. By (4.9), and since ƒ < f^, we get.

T G T O
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where VuJ is the (constant) gradient of Uj on T. Therefore (4.8) will hold if we can show that

(4.11)limsup VJ f(sj[VuJ\2) < I |Vu(a;)|2da;.
*->«> T € T o Sj Ja'

For each j we define the function Uj = (VUJ • X)reT° ^r ) e L2(ftf;M2); we also let Aj === IJreT? ^* ï^o m (4.10)
we deduce that there exists some constant c > 0 such that

f \Vv(x)-Uj(x)\2dx = f \Vv(x)-~Vuj(x)\2dx + / |V^

< CEj,

so that (Uj) tends to Vv strongly in L2(O/;M2) as j —> oo. Notice, moreover, that the séquence (Uj) is uniformly
bounded in Loo(r2';M2). Indeed, Uj being a Lagrange interpolation of v, the slope of Uj along the edge of any
triangle T e T° is less than ||V |̂|Loo(E2.M2), thus by Remark 3.5

ll^lk < l|V|| = k<+oo.

For any j let

Sj = sup M > i.
0<t<£jk2 t

From the properties of ƒ we know that Sj -> 1 as j —» oo. Now,

|2dx = «,- f

hence (4.11) holds. This achieves the proof of (4.8), so that (4.1) holds true. From this inequality and from
Corollary 3.2 we deduce that (F£) F-converges to F in LP(O) as e -^ 0 for 0 < 0O < 45° - arctg(l/2), so that
Theorem 1.1 is proved. D

5. PROOF OF THE CONVERGENCE RESULT

Proof of Theorem 1.2. Let g G L°°(ü) and for each e > 0, let ue G Ve(Q) be a minimizer of

F£(u)+ f \u(x) - g(x)\p dx .
Jn
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Notice that supe>0{Fe(we) + Jn \u£(x)—g(x)\p dx} < c = JQ \g(x)\p dx < +00. Choose some S > 0 and construct,
for all e > 0, ve as in Proposition 3.3 with A = Q. As

(1 - o) f \vve(x)\2 dx + c5 y}{sVe n î2w(e)) <

and

/ (5.1)

we deduce from Ambrosio's Theorem 2.1 that for any 77 > 0, there exists a subsequence (v£j ) and u €
such that v£j(x) tends to u(x) a.e. in Çlv.

Using a diagonal procedure we may therefore construct a subsequence of (v£)} denoted by (VJ) (with Vj = v€j,
and we will dénote as well the fonctions u£j by Uj)y and u G 055X^(0), such that Vj(x) tends to u(x) a.e. in Ö.
By (5.1) and Fatou's lemma u G LP(O), and for any p > 0, if j is large enough,

/ \vj(x)-u{x)\dx < p\Q\ + / |vj(x) ~ti(x)|X{,Vj^u>
Jn Ja

< P\n\ + n^ - u\\LPm \{\VJ - u| >

where p' = p/(p — 1) (recall that p > 1). Thus (VJ) converges to u strongly in Xx(0)5 and the same kind of
argument, together with (3.6), shows that (UJ) also converges strongly to u in £1(O) as j goes to infinity.
Invoking the F-convergence resuit of Theorem 1.1 in the strong topology of Lx(0) we deduce that

F(u) < liminfi^.fu,-)- (5.2)

Obviously, u is also the weak limit in LP(Q) of Ujy therefore

/ \u(x) -g(x)\pdx < liminf ƒ |uj(a:) - g{x)\p dx, (5.3)

and combining the last two inequalities we see that

F{u) 4- / \u(x) - g(x)\p dx < liminf {F'SAUJ) + / |^(^) - g(x)\p dx\ . (5.4)
Jn J-*00 l JQ ;

Now, let v! G GSBV(Q) fl 1/^(0). We proved in Section 4 that there exists a séquence (uj) converging to u in
Lp(Ü) such that

limsup Fe. (UJ) < F(vf). (5.5)
j-ïoo

As

^ KO + / Mx) - g(x)f dx < F£i («:) + / lu'^x) - fl(x)|" dx, (5.6)
Jn Jn

we deduce from (5.4, 5.5) that

F(u) + / \u(x) ̂  g(x)\p dx < F(uf) + [ \u'(x) - g(x)\pdx,
Jn Jn
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showing the minimality of u. Moreover, if we choose vf = u, inequalities (5.4, 5.5, 5.6) also yield

(^ )+ f \Uj(x) - g(x)\p dx\ = F(u) + / \u(x) - g(x)\* dx ,

which, together with (5.2, 5.3), shows that \\UJ — g\\LP(Q) tends to \\u — g\\Lp(Q)- As p > 1, we conclude that
(UJ) converges to u strongly in LP{Q), and this achieves the proof of Theorem 1.2. D

The assertion in Remark 1.4 cornes from the fact that, by the maximum principle, any minimizer of the
Mumford and Shah problem

min {F(«)+ / \u(x)-g(x)\*dx\

must satisfy |w(#)| < IMU00^) a-e- m Q s o ^na^ ig '1S enough to consider in the above proof functions u
that satisfy this constraint. We conclude by noticing that the séquence constructed in Section 4 also satisfies
IMlL«(n) < H«llL«(n) for all j .

Part of this work was done while the first author was visiting SISSA in the autumn of 1996. This work is part of the
project INTAS-96-1061 "Homogenization of Problems of Mathematical Physics" and of the project "Relaxation and
Homogenization Methods in the Study of Composite Materials", Progetto Strategico CNR, 1995, "Matematica per la
Tecnologia e la Società".

APPENDIX

In this section we show how to construct the triangulation needed in the proof of (4.8). It is not restrictive
to assume that e1 = 1, and to consider the following "renormalized" situation. Fix m E N, m > 3, and let
R = [0,2] x [0,m] and R = } - 1,3[ x ] - l,m + 1[. Let a G [-45°,45°] be an angle, ua = (cosa, sina) and
Va = (-sina,cosa), £° G [0, l[x [0,1[ and for all (fc, l) G Z2, ̂  = ÇOjrkua+lva. Consider nowa "background"
triangulation B in M? based on the closed squares [ÇkjiÇk+ijiÇk+ij+iiÇkj+i] = Ck,i that do not touch R, each
of those being then eut along a diagonal. In order to construct a global triangulation T (hère, of IR2) containing
the triangles of R and B, we need to connect the 2m + 4 external nodes of R, namely, (0, fe), (2, A;), k = 0, . . . , m,
(1,0) and (l,m), to the triangulation B, that has a different orientation (see Fig. 5.11).

First notice that, by symmetry, it is not restrictive to assume that 0 < a < 45°. Let 5 be the union of all the
Cktu (&Î 0 ^ ^ 2 Î whose vertices are ail in R2 \ R. The set S covers the whole triangulation B, and might also
contain (at most) four additional squares, at each corner of the rectangle R (since at the corner there might
be a square Ck,i with an edge that intersects R but ail four vertices outside of R). We put inside our global
triangulation T the triangles obtained by cutting along a diagonal each one of these four possible squares.

Let Sf be the complement of 5, or more precisely the union of the squares Ckj that have at least one vertex
in R. It is not dimcult to check that dS = dSf = S n S'.

An easy study shows that the distance from any square of S to R is at least s/2 — (1/2), so that

S n { x e l 2 : dist(x, R) < V2 - -} = 0 ,

thus

{x e R2 : dist(x, R) < V2 - 1} C S'. (A.l)

Moreover, if C^i C 5', one vertex of Ck,i (say, ̂ s j , with i G {/c, k + 1} and j G {Z, l + 1}) lies inside .R, so that
the four squares dj, Ci-ij, Q,j-i , and Ci- i j - i are also contained in S". In particular, the dise of center £iti
and radius 1 is in 5', and at least one point on the boundary of this dise is at distance less than y/2 — 1 from Ry
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FIGURE 5.11. The two triangulations that have to be connected.

so that we cari find in Sf a path from any point of Ckj. to some point of {x E K2 : dist(sc,ü) < y/2 - 1/2}.
Together with (A.l) it shows that S" is connected.

To show that S is connected we use the following argument. Notice first that for any x $ R^ the rectangle R
lies entirely on one side of either the horizontal or the vertical line going through x. If Ck,i is a square in S5 we
can draw through each vertex the horizontal or vertical line having this property Assume that for each vertex
Ckyi lies on the same side of the cor r esp onding line as R. Then, the four lines delimit a square that contains
R} but since the diameter of this square is at most 2, this is impossible. Therefore, one of those four lines must
eut through C ^ , so that two consécutive vertices of Ck,i lie on the side opposite to R. Assume those the line
through £kti is vertical, and that R lies on the left of this line, while £fc+i,z lies on the right; then, all the squares
Cktv fcr V *> l lie in S, so that each x 6 Ckyi is connected to infmity through some half-line in Ui'>$ ̂ M' C 5,
The other cases can be treated in a similar way, so that each point of S is connected to infinity through a half
line contained in 5. Since Sf is bounded, this shows that S is connected and that Sf is simply connected.

Invoking Jordan's lemma we deduce that f = dS = dSf = 5 D S" is a Jordan curve. It is clearly made of
segments [£fc,z,£fc+i,i] o r [£fc,z,6M+i]5

 a n d s i n c e

Sf C {x e R2 : dist(x, R) < v^} ,

we deduce that this inclusion also holds for f.
Now, we slightly modify the curve F, in the following way. Each time F goes along two consécutive edges

of some square Ckti C S', say5 [x7y] and then [y, 2], we replace these two edges by the diagonal [x,z], and we
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'''':£ R

R

FIGURE 5.12. The curve F.

put the triangle [#, y, z] in our global triangulation T. We call F the new curve obtained in this way; it is not
difncult to check that F C [—2,4] x [—2, m + 2] (since each vertex of F that was lying out of this rectangle
has been "eliminated" by the above described procedure). The new curve F is made of segments [x,y] with
±(y — x) = va or ua + va along the vertical sides of R, and =b(y — x) = ua or ua — va along the two small
horizontal sides of R.

We need now to explain how we connect the nodes of R to the nodes of F (ie., the points £k,i that lie
on the curve F). We will first show how to connect every node in {(0, k) : 0 < k < m} to the nodes of
F Pi [-2, -1] x [-1, m + 1[. Then, the nodes of R in {(0, 0), (1, 0), (2, 0)} will be connected to the nodes of
F fi ] - 1,3] x [-2,-1] in the same way, just by replacing "up" and "down" with "left" and "right" in the
following explanations, whereas exchanging "up" and "down", the reader will understand how to connect the
nodes of R in {(2,/c) : 0 < k < m} to the nodes of F n [3,4] x ] — l,m + 1], and replacing "up" and "down"
with "right" and "left" he will get the algorithm to connect the nodes in {(0, m), (1, m), (2, m)} to the nodes of
F n [— 1,3[ x [m + 1,m.-h2]. Eventually, we will describe how we construct the triangles at each corner of R.

Let F0 be the set {Çkti :kj eZ}nTn [-2, -1] x [-1, m + 1[ of the nodes of the vertical part of F along the
left edge of R, A node n = (0, k) (0 < k < m) is connected to a node in F0 according to the three following
rules:

(a) n is connected to the lowest node in [—2, —1] x [k, k + 1[ (i.e., above n but below (0, k + 1), see Fig. 5.13);
(b) n is connected to all the nodes in [—2, —1] x [k — 1, fe[;
(c) n is connected to the highest node in [—2,-1] x [— 1, k[.
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FIGURE 5.13. Rule (a).

- n

-2

- n

î

FIGURE 5.14. Rule (b) (left) and (c) (right).

Rule (c) is useless if F0 D [—2, —1] x [k — 1, k[ is not empty, as in this case the connection is already ensured
according to rule (b) (see Fig. 5.14).

Notice that, according to rule (a)3 n may remain unconnected to all the nodes above, if F°n[—2, — 1] x [k1 k + 1[
is empty. This is necessary to ensure that none of the segments we draw intersects some other.

It is not difficult to check that, with this method, the whole strip between the left edge of R and F is covered
up with triangles. In particular, we check that there is at most one node of F° in the square [-2, —1] x [m, m 4- 1[
(as if x were the highest node in this square and if x — va € [—2, —1] x [m,m + 1[, then (x + ua)2 > m + 1 so
that the curve F should directly connect x — va to x + uaj and x could not be on F), so that the highest node
of F° has to be linked to (0, m) according to rule (a) or (b),

A more accurate study shows that the triangles we have constructed are of five different kinds; then, studying
every type of triangle, we may establish that their angles are all greater than 9 = 45° — arctg(l/2) > 18°.

We now explainhow we deal with the corners. If x is the lowest node of the curve of Fn[—2, —1] x [—l,m-f 1[
and y the last node on the left of F n ] — 1,3] x [—2, — 1], we know that the above described algorithm connects
both points x and y to (0,0). We simply join x to y, if [x,y] is not already part of F. Indeed, we may check
that in this case there is at most one point z € [—2, —1] x [—2, —1] such that F goes from x to y along [x, z]



DISCRETE APPROXIMATION ÖF THE MUMFORD-SHAH FUNCTIONAL IN DIMENSION TWO 671

FIGURE 5.15. The triangulation T.

and [z, y], so that we have created two triangles [x, y, z] and [x, y, (0, 0)]. Once again, we check that the angles
of the triangles constructed in this way are greater than 9. Notice eventually that the longest edge created by
the whole algorithm has length less than s/S < 3. Figure 5.15 shows the final triangulation T.
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