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COMPUTATION OF GENERALIZED STRESS INTENSITY FACTORS
FOR BONDED ELASTIC STRUCTURES

MARIUS BOCHNIAK1 AND ANNA-MARGARETE SANDIG1

Abstract. We consider coupled structures consisting of two different linear elastic materials bonded
along an interface. The material discontinuities combined with geometrical peculiarities of the outer
boundary lead to unbounded stresses. The mathematical analysis of the singular behaviour of the
elastic fields, especially near points where the interface meets the outer boundary, can be performed
by means of asymptotic expansions with respect to the distance from the geometrical and structural
singularities. The coefficients in the asymptotics, which are called generalized stress intensity factors,
play an important role in classical fracture criteria. In this paper we present several formulas for the
generalized stress intensity factors for 2D and 3D coupled elastic structures. The formulas have the
form of scalar products or convolution intégrais of the given data or the unknown displacement field
and the so-called weight functions, similar to Maz'ya/Plamenevsky functionals introduced in [19] for
elliptic boundary value problems. The weight functions are non- energetic elastic fields, which admit a
décomposition into a known singular part and a more regular one, which is computed by boundary ele-
ment domain décomposition methods. Numerical experiments for two-dimensional problems illustrate
the theoretical results.
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1. INTRODUCTION

Since the papers by Williams [35], Karp and Karal [14], and many others it is widely known that linear elastic
and harmonie fields can have unbounded stresses in the neighbourhood of corners and edges of the boundary
or near points where the boundary conditions change. Similar stress singularities can occur at points where the
interface meets the outer boundary or at the front of a crack between dissimilar materials [36], The singular
behaviour of such fields can be described by means of asymptotic expansions with respect to the distance to
the geometrical and structural singularities. If we dénote by (r, ui) the local polar coordinates with origin in an
interface corner point, then the asymptotics of the two-dimensional displacement or harmonie fields ui,U2 in
the subdomains fii,fi2 read as

u2 ) v ' ; 4 ^ 3 V ̂ 2,j (log r,u;)
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Asymptotic expansions of this type were derived by Kondrat'ev [15] for gênerai elliptic boundary value problems
using Mellin transformation techniques and were adapted to boundary transmission problems by Nicaise and
Sândig [24]. For three-dimensional elastic displacement and harmonie fields near smooth edges or crack fronts
the asymptotics can be expressed in cylindrical coordinates (r,tu,z)

w

where the z-axis is tangential to the edge and r\ dénotes an appropriate cut-off function. Asymptotics of this
kind were obtained by Maz'ya and Rossmann [20] for the Dirichlet problem in a bounded domain and for
the Neumann and the mixed problem by Nazarov, Flamenevsky [22], Costabel and Dauge [6], Rossmann and
Sàndig [28].

In the classical two-dimensional linear fracture mechanics (see e.g. [13]) the leading term in the asymptotics
of the displacement field near the tip of a crack in a homogeneous material is given in the form

' \V2 „ _ KTJ / r \l/2 _ , . . _

where fi is a material constant. The coefficients Kj,Kjj are called stress intensity factors of opening and
sliding mode, respectively. Their importance originates from the Irwin-Griffiths criterion for crack initiation in
homogeneous materials [13]. A fracture criterion for the delamination of composite laminâtes has been proposed
in [12] in the form

where Km dénotes the stress intensity factor of the anti-plane déformation and the constants KJC>
Kiuc are to be determined by experiments.

The coefficients CJ (generalized stress intensity factors, in short GSIF's) in (1) and Cj(z) (generalized stress in-
tensity distributions, in short GSID's) in (2) describe the intensity of stress concentrations in the neighbourhood
of geometrical and structural singularities. Furthermore, the GSIF's can be used to détermine the approximate
shape of the plastic zone in elasto-plastic materials [13].

Due to its great importance in the applications, the computation of the GSIF's and the GSID's attracted
much attention of both engineers and mathematicians. In most applications, the GSIF's and the GSID's
are calculated by extraction from displacement or stress fields or by evaluating certain path intégrais [13].
An alternative approach is the weight function method introduced for 2D crack problems in homogeneous
materials by Bueckner [4] and Rice [26] and extended later to more complicated geometries. The weight
functions are particular elastic fields of infinité energy and can be calculated semi-analytically for 2D [7,14]
and numerically for 3D problems [2]. Maz'ya and Plamenevsky [19] have derived coefficient formulas (so-called
Maz'ya/Plamenevsky functionals) for gênerai elliptic boundary value problems in domains with corners, in which
gênerai weight functions appear. This approach was generalized by Maz'ya and Rossmann [20], Rossmann and
Sàndig [28] for the pointwise évaluation of the GSID's Q(-) . Unfortunately, the corresponding weight functions
are known analytically only for special geometries, e.g. for penny-shaped and half-plane cracks in infinité
domains [5]. A numerical approach to the computation of 3D weight functions with point singularities can be
found in [2,29]. Moreover, numerical methods for the computation of GSIF's in bonded materials were recently
developed [30,34].

The application of Maz'ya-Plamenevsky functionals for the numerical approximation of stress intensity fac-
tors for two-dimensional boundary value problems with the help of FEM is widely analysed in the literature
(see [1,3,8]), where error estimâtes for the FEM approximation are given.
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FIGURE 1. 2D coupled structure semiconductor.

In this paper we study 2D and 3D problems for bonded elastic
formulas and their proofs, known for homogeneous materials, to
putation of the coefficients with boundary element methods and
Aubin-Nitsche trick. Numerical examples illustrate the efficiency
those obtained by other numerical methods.The weight functions
als are calculated semi-analytically as it was done in [7,14]. In
plane interface crack problems a method for the computation of

/
M

Ci(s)h(s)ds

structures. In the 2D case we adapt coefficient
transmission problems. New is here the com-
the corresponding error analysis based on the
of the method and we compare the results with
in the adapted Maz'ya/Plamenevsky function-
the 3D case we present for three-dimensional
the intégrais

(3)

with test functions h(-) defined on the crack front. In this case the weight functions have a uniform singularity
along the whole edge M and can be derived from the known weight functions for 2D problems. This idea
appeared already in [17,21] for harmonie problems in simple domains but was not further investigated. We un-
derline, that in this way we can avoid the computation of the 3D dual singular functions with point singularities
which is numerically expensive.

The paper is organized as follows: Section 2 is devoted to the formulation of the problem. In Section 3 we
describe the computation of 2D singular solutions, which are necessary for the description of the asymptotic
expansions and the construction of the weight functions. Then we give in Section 4 asymptotic expansions of
elastic fields for 2D interface problems and dérive several formulas for the generalized stress intensity factors
using weight function techniques. Next, we apply the coefficient formulas to the approximation of the GSIF's
and give corresponding error estimâtes along with some numerical results. Finally, we apply in Section 6 the 2D
singular solutions in order to create practicable formulas for the computation of stress intensity distributions
for 3D plane interface cracks.

2. FORMULATION OF THE PROBLEM

Let ni,fi2 C R2, be two bounded domains suchthat d^nd^ ^ 0 (see Fig. 1). We dénote by F C ôJ
the interface and by I\ = dfti \ F the outer boundary pièces.

One of the domains £1* can be empty. If F is a proper subset of d£li f) 5^2, then interface cracks occur.
Let us dénote by Pj corner points with Pj C dT and assume that every point Pj has a neighbourhood tij such
that Uj fl fli is diffeomorph to the intersection of the infinité wedge Ci(Pj) with the unit bail Bi(Pj) centred in
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The infinité wedge d(Pj) is defined by

Ci(Pj) — {(r7tj) G R2: r = \x - Pj\,tJi-i < OU < w j , i = 1,2.

The domains Sli are occupied by isotropic linear elastic materials. The linearized elasticity équations for the
displacement vectors Ui = (nj,uf) in fi* read

LiUi(x) ~ fMAui(x) -h (A» +/Ai)Vdivzzi(a;) = /i(:r). (4)

On the boundary pièces Ff, i = 1, 2, Dirichlet conditions are given

U» = 9i, i = 1,2, (5)

whereas on F ^ boundary stresses are prescribed

ert(«i)ài = hu < = 1»2, (6)

where the components of the stress tensor &i(ui) are given by

where n̂  is the exterior normal vector on dVti. Assuming that standard transmission conditions are satisfied on
the interface F we obtain the boundary transmission problem

(7)

The behaviour of the two-dimensional displacement fields ui, U2 in a neighbourhood of a corner point P can be
described by an asymptotic expansion, provided the right-hand sides of (7) are sumciently smooth and satisfy
some compatibility conditions in P [25]:

+ (Ai

(ui)n

+ fj,i)VdivUi

Vi{Ui)Ui

U\ — I62

1 ~!~ ^"2(^2)^2

— fi
= 9%
= A»
= Pi
= Vi

infïi,
onrf,
onrf,
onT,
onT.

where

and r = \x — P\. The complex exponents otj and the fonctions (<P{ j,<Pi j) a r e ^igenvalues and eigensolutions
(éléments of Jordan-chains) of a corresponding generalized eigenvalue problem (see Sect. 3). iV is the number
of eigenvalues in the strip 0 < Re a < d, mg(aj) dénotes the number of Jordan-chains to the eigenvalue aj
(geometrical multiplicity) and Kkj is the length of the kth Jordan-chain. In the following we will assume for
simplicity that the Jordan—chains have the length 1, Le. no logarithmic terms appear in (8) and we restrict our
considérations to d — 1.
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FIGURE 2. Interface crack.

Furthermore we consider three-dimensional coupled elastic structures with a smooth plane interface crack
(see Fig. 2). The asymptotics of the displacement fields tii,W2 in the neighbourhood of the crack front M has
the form

" 2
(10)

provided the right-hand sides of (7) are sufficiently smooth and some compatibility conditions are satisfied (see
Sect. 4 for details).

Hère, 5 is the arclength on the edge M C dT and (r, u) are the local polar coordinates in the plane orthogonal
to M in the point P(s) with parameter s and the constants e, fi, Vi are given by [36]

2TT 1 - /3 ' (H)

Our goal is to dérive formulas for the computation of the coefficients
them for the numerical approximation of the coefficients.

2(Ai + Mi)

(c,; in (8) and Cj(s) in (10) and to use

3. OPERATOR PENCILS AND SINGULAR FUNCTIONS

As mentioned before, the singular functions appearing in the asymptotics (8) and (10) are generated by
the Jordan-chains of some operator pencils which will be derived now. We refer the reader to [23] for main
définitions and facts from the theory of operator pencils.

We create for the two-dimensional boundary transmission problem (7) an operator pencil corresponding to
the corner point P G F n Fi n T2. To this end we map a neighbourhood V(P) := U(P) n (fXi U Ö2) of the point
P by a diffeomorphism x onto x(V(P)) = [Ci(P) U C2(P)] H BX{P) (see Fig. 3).

Letx(^i>^2) = (y 1,2/2) be the new coordinates in \Ci(P)UC2(P)\f)Bi(P), Writing the boundary transmis-

sion problem (7) in the curvilinear coordinates (3/1, ̂ 2) we obtain a boundary transmission problem for differential
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FIGURE 3. Neighbourhood of the corner point P.

operators with variable coefficients, which we dénote shortly by

A{y,Dy) = {£i(y,Dy),Bi(y,Dy),T(y,Dy), i = 1,2}-

It is well known from the theory of elliptic boundary value problems with variable coefficients [15] that the
behaviour of the solutions to elliptic boundary value problems in the neighbourhood of the corner point P is
essentially influenced by the behaviour of solutions to an elliptic boundary value problem generated by the
principal part of the operator *4(y, Dy) with coefficients frozen in the point P. Moreover, the leading ternis in
the asymptotics (8) have the same structure as in the case of operators with constant coefficients. We extend
these ideas to boundary transmission problems (see [24]). Since the principal part of the operator A with
coefficients frozen in the corner point P coincides with the original Lamé and boundary operators, we study the
boundary transmission problem in the double wedge C±(P) U C2(P) with vanishing right-hand sides

U\ —

or

or
: = u±

B2u2 : =

0
0
0
0
0
0
0.

in Ci(P),
on 7,
on 7,
on 7i,
on ji,
on 7i, 1
on 72- f

(N-N)

{D - N).

(12)

Writing the boundary transmission problem in polar coordinates and applying the Mellin transform

/>OO

M.u(a,u;) = / r~Oi~1u(r, oj)dr
Jo
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with respect to the distance r = \x — P\ we get a boundary transmission problem for a System of ordinary
differential équations depending on a complex parameter a

Li(a)ui(a,iv) = 0 for u)i-i < u) < tui, i = 1,2,

Bi(a)ui(a,w0) = 0,
B2(a)u2(a,uj2) = 0, (13)

T1(a)ui(a,cüi)-T2(a)u2(a,uj1) = 0.

Here (see e.g. [14])

T M ( < \ -= ( A*i(öa,«f + (O - 1 )< )
^ a ; V < ; l (Ai + 2/ü)dta,< + (Ai(a + 1) + 2Mi)

( < ) i f S î u i = u i '

and (u j , ^ ) are the polar components of the displacement vector ui.
For every a e C the operator AL(OO defined by

A (r,\(Ul\ ~\( L i ( a ) ^ i ° \ ( Bi(a)ui(a;o) 0
L W U2J " U ° U{a)u2 ) \ 0 B2(a)u2(u>2)

-T2(a)«2(a;i)

maps [iJ2(^o,^i)]2 x [H2{u)^u>2)\
2 into [L2(w0,wi)]2 x ^ ( ^ i , ^ ) ] 2 x [C2 x C2] x [C2 x C2].

The eigenvalues and the eigenfunctions of the operator pencil AL(') can be easily calculated using the idea
from [7,14]. It is known [14] that the solutions of the homogeneous équations

( ) ( ) = 0

have the form

C O S ( ( 1 + a)uj) B (
z \ cos((l

- a)uS)

where Ci = (^ + ot)/{f^i — ex) and Ki = (3/XÏ + \i)/{iii + Ai). We insert the ansatz (15) into (13) and obtain a
System of 8 homogeneous linear équations for the unknown coefficients Ai, Bi, d, Di, i = 1, 2. The corresponding
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parameter depending matrix AL{O) has the form

tfi(<*,0) 0

AL(a) =

\ 0
-T2(a)U2{a,oJi)

U2(a,cü2)

(16)

Thus the problem (13) has a non-trivial solution iff the matrix AL{OL) is singular, Le. the spectrum of the
operator pencil AL consists of all complex-valued roots of the transcendent équation

AetAL{a) = 0.

Suppose that otj is a root of (17) and that the coefficient vector

(17)

satisfies the équation

Then

v := {A1,B1,CUD1,A2,B2,C2,D2)

AL(aj)v = 0.

, i= 1,2,

(18)

(19)

is an eigenfunction of the operator pencil AL to the eigenvalue aj. Since eigenfunctions are determined up to a
constant factor we will assume in the following that the coefficient vector v has the Euclidean norm equal to 1.

Harmonie fields governed by boundary value problems for the Poisson équation can be handled analogously.
The problem (12) reads then

—u2

du2

Ui =

or<
i

du2

dn2

0
0

0

0

0

0
0

in Ci(P),
on 7,

on 7,

on 7 i ,

on 7 i ,

on 7i, !
on To. I

(D-D)

(N-N)

(D - N).

(20)

Applying again the Mellin transform we obtain

d2u
k(a)ui(a,uj) := -~(a,uj) -f a2Ui(u>) = 0 for

- u2(a,(jJi) = 0,

dui du2

^ i a ^ - ^ — ia,^) = 0,
6i(a)iti(a,wo) = 0,
b2(a)u2(a, u>2) = 0.

= 1,2,

(21)
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Here is

( Ui(u)j) for Dirichlet boundary conditions,

a . , . . T , , ,.+.fj.i-£—Ui{a,uij) tor Neumann boundary conditions.
oui

The corresponding operators AA (a) defined by

0 2 ( ) 2 ) \ 2 ( ) 2 ( 2 ) J V Hifoifa) fto&Mi) )}
(22)

map H2 (u>0, CJI) x H2(cox, û -) into L2 (uo, &i) x L2(ui\, u;2) x [C x C] x [C x C] for every a e C. The eigenvalues and
eigenfunctions of the operator pencil .4A can be calculated as before taking into account that the eigenfunctions
have the gênerai form

Ui(a, ÜJ) = ra [Ai sin(au;) + Bi cos(aa;)] (23)

with constants Ai, Bi, i = 1,2, to be determined.

4. ASYMPTOTIC EXPANSIONS AND COEFFICIENT FORMULAS. 2D PROBLEMS

4.1. Asymptotic expansions

The eigenvalues and corresponding Jordan-chains of eigensolutions and associate eigensolutions of the op-
erator pencils (14, 22) govern the asymptotic expansions (8, 10). Here we cite the results for two-dimensional
corner singularities.

Let us assume for the sake of simplicity that all Jordan-chains of the operator pencil AL have the length 1.
This assumption is valid apart from some isolated opening angles. We dénote by (<pitj,<P2j) an eigenfunction
corresponding to the eigenvalue ctj and define

= ra>( V1* W (24)

In what follows we use trace spaces defined on an open part of the boundary

/ i) : supp u C f4} for s > 0

for s < o .

Theorem 4.1 ([24]). Let ft e [L2(Qi)}'
2, 9i e [H*I2{TP)]\ K e [ i ^ O f )]2, Pl e [iî3/2(r)]2, p2 G

[.Ö'1/2(r)]2. Furthermore we assume that there exist functions Wi G [H2(Q,i)]2 with

(wi - tü 2) | r = Pi|r,

(<Ti(wi)ni +o-2(^2)n2)|r = P2|r-

Then the solution of the two~dimensional problem (7) admits the décomposition
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with Vi G [H2(Qi)}2. The summation in (25) is taken over all eigenvalues otj corresponding to their geometrie
multiplicity mg(ctj)-

Remark 4.1. The existence of fonctions Wi in Theorem 4.1 induces compatibility conditions between the data
gi, hi and pi in the point P. For example, in case of the D-D problem we have for sufficiently smooth data

lim Qi(x) — lim 02 (x) = lim Pi(x).

4.2. Coefficient formulas for stress intensity factors

First we dérive formulas for the coefficients Cj in (25). For the sake of simplicity we assume in the proofs that
the boundary pièces Fi and the interface F consist of straight lines in a neighbourhood of the corner point P.

Let OLj be an eigenvalue of the operator pencil AL with the eigenfunction (ipi,j7 <p2tj)- It can be easily shown
that — â is an eigenvalue of AL iff ot is also an eigenvalue of AL- We introducé the notation

«), (26,

where (il>ij,i/>2tj) is an eigenfunction of the operator pencil AL corresponding to the eigenvalue — âj. Thus the
functions (wijiw2ij) are singular solutions (weight functions) of the homogeneous problem (12).
Further, we define for complex valued functions Ui,Vii Qi —• C, which are smooth enough, the sesquilinear
functional qi by

Qi(ui,Vi) = / LiUi -ïïlàx — Ui- LiVidx + Ui - ai{vi)riiàsx — I ai{ui)fii -vîdsx. (27)

Note that qi{ui,Vi) — 0 for sufficiently smooth functions UitVi due to Green's formula.
In the following we dénote by 77 G Co°(Ro~) a cut-off fonction with r)(r) = 1 for 0 < r < ro-

Lemma 4.2. Let (vij,V2j) and (wij,W2,j) be ihe functions defined by (24) and (26), respectively. Then

qi(wvij,Witj) = / \0i(vitj)ni -wïJ-Vij - (Ti(wij)rîi) dsx, (28)

dBô(P)nni

with small enough 6 > 0.

Proof. Since Vij^Wij G [H2(fti \ B$(P))]2 we can apply Green's formula in fîj \ Bs(P) and take the limit as
ö —> 0. In this way we obtain

qi(r)Vij,wi}j) = lim / yJi(vitj)Hi • w^j ~ vitj - <Ti(witj)niJ dsx. (29)

dBs{P)nni

Let us prove that the value of the intégral on the right-hand side of (29) does not depend on the choice of 5 > 0.
Let 0 < Si < Ö2 and Bs1}s2 = [^52(-P) \^ i (^*) ] ^ ^ - Since the functions Vij^Wij are smooth in Bs1}s2 we
obtain due to Green's formula

/ • Wij - Vij • <Ti(witj)ni) dsx = 0.
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The fonctions Vij^Wij satisfy homogeneous boundary conditions on dBsxj2 D dVti. Therefore we conclude that

f / _ _ ^ , , , )ft\ds = f f (V..)n-*ü^-v.*(w )n)ds

J V tV %'3) l h3 %t3 n %3) V x J \ n %*} % %'3 %ó n %"3} V x

8B6l (P)nQi a s 5 2 (P)nQi
D

Since the eigenfunctions (ipijifaj) &*£ defined up to a constant factor we impose the following normalization
condition:

Lemma 4.3. Let the eigenfunctions {(^ï.j,^,^)» 1 — 3' — rng(a)} ^° ̂ he eigenvalue a be fixed. Then the
eigenfunctions {(^ï.fej^.fc)) 1 < k < mg(a)} to the eigenvalue —a can be chosèn in such a way that the
following biorthonormality condition is satisfied

Eft(wj,t«i,o = { l lJZkk (30)

Now we are in position to dérive the coefficient formulas.

Theorem 4.4. Suppose that the assumptions of Theorem 4.1 are satisfied and that the functions (vij^V2j)
and (wiij,w2j) defined by (24) and (26), respectively, satisfy the biorthonormality condition (30). Then the
coefficients Cj in (25) are given by

r / _ ^ _

r / _ ^ \
y ^ i i i ,j i i i 2 2 2 i , jyH-

r

2

Proof. We insert the décomposition (25) into ^2 Qiiv^^id) an<^ obtain

2 2 / \

( ^ 5 Z CkVi>k + ̂ Vi' ̂ ' J
0<Reafc<l

2 2
Cfc X^ QiiWVifaWij) + 5 3

0<Reafc<l i=l i=l

Due to Green's formula the terms qi{r]Vi, Wij) vanish. If atj - ak > 0 then qi{r}viyk, Wij) vanishes due to (29). If
2

ctj — ak < 0 then the terms Qiiriv^k^ij) must vanish since ^ Qi(vuiiwi,j) is nnite. Because of the biorthonor-
i=i

mality condition (30) it follows then

2 2

5 3 fcfaUt) ̂ i,j) =
i=l 0<Rea:/<l 2=1
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On the other hand

2 ( f f

+ / rjUi - o-i(wij)ïîidsx ~ j ai(r}Ui)ni • w^

Exploiting the transmission conditions for (w>i,j, t^2,j) on F we obtain

2 /

53 ( / Li^ui) * ^ 7 d x + V^i' o-i{wij)niàsx - ƒ
'IV*' *^ t/

+ / (rç(«i - ^2) * <Ji(w;ij)ni - (cri(?7Wi)ni + 0-2(^2)

Thus the assertion holds. D

Remark 4.2. Theorem 4.4 is valid also in the case when Q,\ U ̂ 2 C supp 77, Le. the cut-off function 77 in (31)
can be omitted

. \
' ^ 7 d ^ + / («» * cn(wij)ni - o-i(ui)ni • ̂ ~ J d5x I + / (pi • ̂ ( lü i j jn i - p2 - WjJ dsx. (32)

/

The proof of Theorem 4.4 can be repeated in this case, taking into account that w^j is smooth outside of a
small vicinity of the corner point P.

Theorem 4.5. Suppose that the assumptions of Theorem 4-4 are satisfied and let (W±j, W2j) be a solution of
the two-dimensional transmission problem (7) with vanishing right-hand sides, which admits the décomposition

(33)

with lii^J E [Jï1(^)]2
ï i = 1,2. Then the following formula holds

CJ = ? , I / Ji'Witjóx+ f gi'
r

- j hi'Witjdsx + j (pi •ai(WltJ)ft1-p2-Wld
>)d3x. (34)

J
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Proof. Inserting the décomposition (33) into the two—dimensional problem (7) with vanishing right-hand sides
we conclude that the fonctions (w™^w^) satisfy the transmission problem

fiiAwlJ + (Ai + /ü) Vdivw^f - 0 infii,

°i{<j)rii = -(Ti(wij)fk onrf, (35)

<ri(w™f)rii -f <T2(w™j)n2 = -(<ri(witj)rii + cr2(w2,j)n2) on IV

Since the right-hand sides of (35) vanish in the neighbourhood of the point P and are smooth, the transmission
problem (35) has a unique solution (w™!j,w™f) which belongs to [Hl(üi)}2 x [i?1(fi2)]

2- We have

2 2 2

] P qi(ui, Witj) = ] P Qi(ui}witj) -f ] P ̂ (^> wijï'

2=1 i = l i = l

Because of Green's formula the expressions qi{ui^ w^p), i = 1,2, vanish and we obtain

2 2

On the other hand

2 2

i=1

j)dx ƒ m - <Ti{Wij)niàsx - j <Ti

?J- - a2(u2)n2

Thus (34) holds. . D

Let us compare the numerical effort due to the application of formulas (32) and (34). In order to evaluate (32)
we have to compute the unknown boundary data Ui or <Ji(ui)fîi on I \ for every loading. In order to apply
formula (34) it is necessary to compute the unknown Cauchy data of the weight functions (WI}JJW2}J) by
solving the auxiliary transmission problem (35) and to calculate the weight function inside the domain 0$ using
a représentation formula. Once computed for a spécifie domain, the weight functions (Wij, W2j) can be used
for the computation of stress intensity factors for different sets of loadings on this domain.

5. NUMERICAL APPROXIMATION OF THE G S I F ' S

5.1. Error estimâtes for domain décomposition methods
In order to apply formulae (32) or (34) to the numerical approximation of the coefficient Cj in (25) we

have to solve the transmission problem (7) or (35), respectively, This is done by boundary element domain
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décomposition methods (see [31, 33] for a detailed description of this method). We consider a variational
formulation of the transmission problem (7). For the sake of simplicity we assume that zero body forces and
homogeneous transmission conditions are given, i.e. f\~f2~V\~Vi — 0. Let us dénote by Ui the boundary
displacements and by U the corresponding boundary stresses on öfi*. Let §i G [H3^2(dfli)]2, i = 1,2, be
extensions of the given Dirichlet data gi with g\ ~ §2 on the interface T and let hi G [H ^(dfij)]2 , 2 = 1,2, be
extensions of the given Neumann data hi with h\ = K2 on F. We split the boundary data m, U according to

Now we look for the fonctions (ui,û) in the Hubert space V defined by

V = {((ui,U2),(*i,*2)) e [H1'*?? UT)}2 x[HV2Çr» UT)]2 xH-V\T° UT)]2x

H-l'\T$ UT)]2; m = u2 on r } •

Furthermore, we introducé for real 5 the space

H s = [ H ^ d Q x ) } 2 x [ H s ( d Q 2 ) } 2 x [ H 8 1 2

with the norm

Note that F is a subspace of
, The "symmetrie" variational formulation of the transmission problem for (u,t) reads as [11,31,33]:

Find ((tti,tfc2), {ïiM)) e V such that

a(u, t; û, £) = -a(g, h\ û, f) V(û, f) G V, (36)

where the bilinear form a(-, •) : V x T/ —> SI is defined by

2 = 1

Hère, 1^ is the single layer, Di the hyper-singular, Ki the double layer and Ki the adjoint double layer operator.
The bilinear form a(-, *) is continuous and positive definite onVxV provided that meas(Ff U T§) > 0 [11].
Otherwise we have to replace the space V by VAT = V/^ where 1Z is the space of rigid motions and we have to
assume that YH=I Ir hirdsx = 0 for all r elZ.

We remark that the right-hand side of (36) can be written as dual pairing on V' x V using the Riesz
isomorphism.

We dénote by S1(düi) the space of pieeewise linear and by S°(dQi) the space of pieeewise constant splines
on dfti with the mesh parameter h. Let {üh^ïh) — {{^h,\^h,2)-> (£fr,15 ,̂2)) be the Galerkin solution of (36) in
the space

]2 x [s°(dn2)}
2} n v.

We define the approximations Uh^th.i oîui^ti by

«M = üh,i + ^i, th.» = ïft.t + /ii. (37)
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The errors of the approximation of (n, t) and (ü, t) are the same since

The order of convergence dépends on the regularity of the weak solution (ü,t). Let a = minReai, where the
minimum is taken over all singular points P and let gi G [iJ3/2(Ff )]2, hi e [ J ï 1 / 2 ( r f )]2. Prom Theorem 4.1
follows that uuüi G [ i7 x / 2 + a - £ (ö^) ] 2 a n d Uiü € [H-l/2+a~e{dQi)]2 for a small positive e, Le. (u,£),(ü,£) e
jjl/2+OL-e

Lemma 5.1. Let gi € [i/3/2(df^)]2,/^ € [Hl/2(d£li)]2 be fixed extensions of the given Dirichlet and Neumann
data and let r,/? be real numbers with 1/2 — OL + e < r < 1/2 < j3 < 1/2 + a — e. Then the Galerkin procedure
converges asymptotically as

\\(u,t) - (uh,th)\\Hr < dh^-T\\(ü,Ï)\\H»- (38)

Proof. We follow the ideas of Hsiao/Wendland [10] where error estimâtes for boundary element methods are
given under the assumption that the solution is smooth enough. Similar results to FEM discretization of
problems with non smooth solutions were obtained in [3,16].

We have

u,t) - (uh,th)\\H-r = HCM) - (Üh,th)\\HT = SUp \((Ü - Ühit ~ th),(Ç,
| | ( C « l l l

Since (C, 0 G H~T C V', there exist a unique solution (77, u) e H~~TJtl Pi V of the adjoint variational problem

a/(T?,i/;Û,t) = a(û)£;ï7)i/) = <(Û)f),(C,O) V(â , f ) e7 . (39)

Note that the adjoint bilinear form a (-,*): V x V —>• R is continuous and positive definite and that the regularity
results for (36) are also applicable to (39). Let (r]h,i/h) £ Vh be the Galerkin solution of (39). Then we obtain

II(u,t) - (un, th)\\HT = sup \a(ü - ühyt - th\ 7], v)I
I K C O I I H - T ^

= sup \a(ü — ühit- th\r] — rih,v — VH)\ -
IKCOIItf-^i

The continuity of the bilinear form a(-, •) provides now

\\(u,t) - {uh,th)\\H-r < d\\(ü-üh,t-th)\\Hi/2 sup \\(v-Vh,v- ^ ) I I H I / 2 .
K

From error estimâtes in the energy norm for solutions on boundary element domain décomposition methods [9,11]
we obtain finally

) ( ) | | < dhP1'2\\(üï)\\hT+1/2 sup \\(TI>V)\\H-^-

The assertion follows now from the a priori estimate

with a positive constant fc, since ||(C)Olliï-T = 1-
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5.2. Error estimâtes for the GSIF's

Let us apply formula (34) to the numerical approximation of the coefficient Cj in (25). To this end we
have to compute the unknown boundary data of the regular part w™f of the weight function W^ by solving
the transmission problem (35). In the following we dénote the computed Dirichlet data of wT^ë on dVti by

(uij>u2j) a n d t h e c o m P u t e d Neumann data on dQi by ( t ^ , ^ ) . Let & e [#3/2(<9^)]2> ^ G [H1/2(Oui)]2 be
fixed extensions of the given Dirichlet and Neumann data. Since only homogeneous transmission data are given
and W^jlpp = 0, o~i(Wij)ni\rN — 0, we can write formula (34) in the form

Ci = %\J~9i" -I - Wifjdsx I . (40)

Inserting W
coefficient Cj

= Wij + u%tj and a^W^fii = <Ti(wij)ni + t\j into (40) we obtain the approximation c£ of the

- f h . . ( v , - . + u > d s )
Ja

 l Wl'° u%'3 Sxj '
(41)

The following error estimate is valid:

Lemma 5.2. Let ça G [H3/2(dfli)]2, hi G [Jï1 /2(ô^)]2 be fixed extensions of the given Dirichlet and Neumann
data and let c^ be the approximation of the coefficient Cj defined by (41)- Then the following error estimate is

ldvalid

l e , - t £ |

with a positive real constant d and a small positive s.

Proof. We have

2

(42)

C3 - ^
2 = 1

ƒ h • (o%{wlf)n% - t^)

Note that according to Theorem 4.1 w™f e [H^2+ct-£(dili)]2
9 a,{w™f)ni €

2 and hi E [H^idtti)]2 we can estimate

(43)

\ Since gi E

~c ó\ <

Lemma 5.1 with r = 1/2 — a + e and j3 = 1/2 + a — e provides us the assertion.

Remark. Similar estimâtes were obtained in [3] for the FEM approximation of the SIF's.

Example. We consider the simple boundary value problem

Au = 0 inQ,
u = g := ra sin(a:u;) on dQ (44)
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TABLE 1.

N || |c - Cfc|

28
56
112
224
448

0.024589
0.008667
0.003687
0.001720
0.000836

FIGURE 4. A bounded sector.

in a bounded sector with the opening angle UJ0 (see Fig. 4).
In this case the solution of the boundary value problem coincides with the given Dirichlet data and we have

a = TT/CÜQ. The stress intensity factor is equal to 1 and can be calculated by a special case of formula (34)

-I
dn

g dnwdsa (45)

where

w = r sm{acü) + w
7T

(46)

and wTeg G H1^2+CL-e{dVL) is a solution of (44) with g = (l/7t)r~Œ sin(aw). The theoretical rate of convergence
according to the estimate (42) is h2(a~£h In Figure 5 we compare the theoretical and the numerical rate
of convergence in dependence on the singular exponent a G (0.5,1.0) corresponding to the opening angle
WQ £ fa"» 2TT). Here the numerical order of convergence is computed by

log |c-492l
|c-cf2|'

where c™ dénotes the approximation of the coefficient c using a uniform mesh with m éléments. One should
remark that for small m the numerical rate of convergence is better then the theoretical one, but the agreement
between the theoretical and numerical values improves for increasing m.
In order to demonstrate the absolute accuracy of the approximation we show in the Table 1 the relative error
of the approximation in the dependence on the number of boundary éléments. Here we take a = 0.5008 Le.
LJQ <~ 2?T.

5.3. The Motz' anti-plane crack problem

In Section 4 we have restricted our considérations to the main part of the asymptotics, Le. we have considered
only singular exponents aj with 0 < Reaj < 1. This considérations can be easily extended to exponents of higher
order, provided that the boundary is straight in the neighbourhood of the corner points and the given data are
smooth enough. Otherwise it would be necessary to calculate the explicit influence of the geometry and of the
given data on the asymptotics. In the following example we compute for a simple problem the stress intensity
factors of higher order for which comparable results are available.
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

FIGURE 5. Theoretical and numerical approximation rate.

(-7,7) (7,7)

u=1000

u=0

(-7,-7) (7,-7)

FIGURE 6. The Motz problem.

Let fi be a square with corners in the points C = (-7,7), B = (7,7), E = ( -7 , -7) and F = (7,-7)
containing a slit or a crack as shown in Figure 6. The Motz' anti-plane crack problem requires the solution of
the Laplace équation

with boundary conditions

Au = 0 in fi

u = 0 on FG,

u = 1000 on AB

and

(47)

(48)

(49)

(50)



COMPUTATION OF STRESS INTENSITY FACTORS

TABLE 2.

871

Techniques used || a i
Conformai Transformation Method

(Rosser/Papamichael [31])
Boundary Intégral Equation Method

(Xanthis et al [40])
Singularity Subtraction Technique

plus Local Mesh Refmement
(Liu/Lee/Pan [20])

Motz' Technique plus
Local Mesh Refinement

(Liu/Lee/Pan [20])
Weight Punctions Method

(Bochniak/Sàndig)
N=38
N=78
N=158
N=318
N=638
N=1278

151,625

151.63

151.634

151.698

152.28748
152.10532
151.89941
151.77058
151.69987
151.66297

a2

4.733

4.73

4.729

4.759

4.7388568
4.7621737
4.7535156
4.7446978
4.7391951

0.133

0.133

0.134

0.141

0.11565881
0.12983250
0.13264147
0.13310424

on the rest of the boundary including the slit. The solution of this boundary value problem has in the vicinity
of the point 0 the représentation

500 + ] P akr
k~1/2 cos{k (51)

In Table 2 we compare the results computed by using formula (34) with results obtained by several other meth-
ods [18,27,37].

5.4. Numerical example for a bimaterial joint

Let us consider a simple coupled structure consisting of two different linear elastic materials (see Fig. 7). On
the left-hand side of the structure Dirichlet conditions are given, whereas on the remaining part of the boundary
Neumann conditions are prescribed.

The displacement fields (ui,ii2) have in the neighbourhood of the point P2 the asymptotics

O(r). (52)

If the material constants

are chosen as

then a & 0.774147.

Ex = 20000.0 MPa, E2 = 200000.0 MPa, vx = ^2 = 0.35,
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\

W

W

FIGURE 7. A bimaterial joint.

0.12

0.06

E2=40000 -
E2=200000 •
E2=400000 •

0.5 1.5
Width W

2.5

FIGURE 8. The main stress intensity factor c.

We calculate the leading stress intensity factor c in (52) using formula (34). For the computation of the
unknown Cauchy data of the solution (ui7u2) on Fi U F2 and of the weight functions (Wi, W2) we use the
boundary element domain décomposition program 2DBEMDD developed by Steinbach [32]. The boundaries Ti
and F2 are discretized by uniform meshes.

Let us investigate the dependence of the stress intensity factor c in (52) on the width W. The applied force
is hère ƒ = 2000 MPa, the length of the structure is fixed L = 1. The material constants are chosen hère as
before: v\ = v<i — 0.35, E\ = 20000 MPa. Figure 8 shows the leading stress intensity factor c in dependence on
the width W for different values of the constant E^.

The limit passage W —> 0 leads to a singular perturbed problem and the leading stress intensity factor c
seems to become infinité.
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FIGURE 9. Plane interface crack.

6. T H R E E - D I M E N S I O N A L P L A N E I N T E R F A C E C R A C K S

6.1. Asympto t ic expansions

Now we proceed to the 3D plane interface crack problem, assuming that the crack front M C dT is smooth
and that Neumann conditions are given on the crack surfaces. The results [6, 20, 22, 28] about asymptotic
expansions for boundary value problems can be immediately extended to boundary transmission problem using
ideas from [24].

Let us calculate the explicit asymptotics of the displacement field in the neighbourhood of a plane interface
crack following the gênerai theory of elliptic problems in domain with edges (see Chaps. 11, 12 in [23]). It is
convenient to formulate the asymptotic expansions in local curvilinear coordinates (r, o;, s) defined by

r cos u) (53)

where [0 ,LM) 3 S 4 (71(5), 72(5), 0) is a parametrisation of the crack front M with respect to the arc length s
(seeFigs. 2, 9).

If we dénote by u^uf,uf the components of the displacement vector Ui corresponding to the coordinates
(r,uJ, s), then we obtain a décomposition of the Lamé operator Li and of the linearized stress tensor (Ti(u) in a
toroidal neighbourhood of the crack front M

Li = Lï + Li,

with

1

dr dr r dw rZ
ui\ - M i "

-u
r

\d_
r du>

d_
~dr

dr r du> r l

dr r duj r ^

d2uj Iduj 1 d2uf
dr2 r dr r2 du2

(54)
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and

a°(Uiy
s =

For fonctions i>(r, CJ, s) with i? ~ O(ra) we have

Xjt; ~ O(r»-2)
O(ra).

The main part of the asymptotics of the three-dimensional displacement field (1*1,̂ 2) in the neighbourhood of
the smooth crack front M is determined only by the principal parts of the operators Li and <Ti(u) with coefficients
frozen pointwise in M, Le. by the operators L\ and o~f(u). Thus the asymptotics of the displacement field
m = (ui, uf,u*) in Qi- has the form

(r,W)s) ~ C l(5)^/2+- [ ^ l ( w ) ) + C 2 ( f l ) r i / 2 - t e | ^ a ( w ) | + C 3 ( s ) r

with e defined by (11). Here, 1/2 is an eigenvalue of the operator pencil AA with the eigenfunction (̂ 1,35
and l/2±ie are eigenvalues of AL with the eigenfunctions ((^ï5i, ^,1)) (̂ 2,1? ^,1)) an<i ((̂ 1,2» ̂ ,2)» 0̂ 2,2) ^
respectively.

Analogously to elliptic boundary value problems in domains with edges [23] we have

Theorem 6.1. Let h G [L2(Qi)]3, 9i e [H3/2(TP)}3, ht 6 [H^ÇT?)]3, Pl E [HS/2(T)}3, p2 G
Furthermore we assume that there exist functions Wi € [H2(Çli)]s with

(w! ~w2)\r = Pi|r,
(<Ti(wi)ni -i-a2(w2)n2)\r = P2\r-

Then the asymptotics (56) of the solution of the three-dimensional problem (7) is valid in the neighbourhood of
the crack front M. Furthermore we have Cj(-) E iJ1/2(M).

6.2. Coefficient formulas for stress intensity distributions

For the computation of the stress intensity distributions ^(5) in (56) it is convenient to approximate them
by éléments of an finite dimensional fonction space. Let {ei, . . . ,en} be a basis of a n-dimensional space of
splines defined on the edge M, Le. ê  : M —>• E, We approximate Ci(s) by a linear combination

fc=i
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This leads to a square System of linear équations for the unknown coefficients Cjtk

M

with a positive defmite matrix. The moments

n f p \
Cj(s) • ei(s)ds = ̂ 2 C3,k ' / ek(s) • ei(s)ds

M k=1 \M /

I Cj(s) - ei(s)ds
M

of the coefficients Cj(s) can be calculated using similar ideas as in Section 4. To this end we write the asymp-
totics (56) for the displacement fields (1*1,̂ 2) in ̂ 1 U ̂ 2 in the form

Ul \(r u s) ~ c,fsV ( ^ +co(s)r ( \ + c*(s)r (
u2 ) { r ^ S ) C^S)T \ $2 i l(w) ) +C2{s)r \ *2)2(cc) ; + C 3 ( S j r ^ $2,3(0;)

and introducé the functions

O
0

where the vector functions ((^1,1, ̂ i ) , (^2,1^2,1)) an<^ ((^1,2? ̂ 1̂ 2)5 (̂ 2,2» ̂ ,2)) a r e eigensolutions of the op-
erator pencil *4L corresponding to the eigenvalues —â\y2 — —1/2 ± ie, respectively, and the vector function
(̂ 1,3) ̂ 2,3) is a n eigensolution of ̂ IA corresponding to the eigenvalue —a3 = —1/2. According to (54) the op-
erator L° can be decomposed into the two-dimensional Lamé operator acting on the displacement components
u\,v% and the two-dimensional Laplace operator acting on the displacement component u\. Thus we can use
Lemmata 4.2 and 4.3 in order to biorthonormalize the functions $ij and ̂ ij. From Lemma 4.3 it follows that
for a fixed choice of ($i,j, 3>2,j), j = 1, 2,3, the functions (*i,j, ^2,j)» 3 = 15 2,3, can be chosen in such a way
that the following biorthonormality condition is satisfied

2 y
J2 J (<r?{rai$i,i{v))fH-r-^*itk{u>)-r^^^ = ölk (57)

for /,*; = 1,2,3 and S > 0.

Theorem 6.2. Suppose that the assumptions of Theorem 6A are satisfied. Let h G C2(M) and let 7] G CO°(RQ~)

be a cut-off function with r}(r) = 1 for 0 < r < ö. We define the functions

V{r)r-^h{s) ( l1^ ) (W), 3 = 1,2,3.

Then the following intégral formula holds

M (58)
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Proof We insert the solutions Ui of the three-dimensional problem (7) and the functions ^ ^ into Green's
formula in fti \T§, where the torus T$ is defined by

T$ = {(r, u, s) e M3 : 0 < r < ô, 0 < w < 2?r, 5 e [0, LM)}*

Exploiting the transmission conditions for (ui,u2) and (^xjj5 ^2j) o n F w e °t>tain

i = 1 \pi\Ttf nAT5 rAT

/ (ppi • cri(*ij)iïi ~ P2 • *î , j) d*x = 5 ^ / (^i(ut)TÎi ' * & - « * • ^ ( * 5 ) ^ ï ) dsx- (59)

We calculate the limit of the right-hand side of (59) as S'-ï 0. To this end we insert the asymptotics (56) of Ui
as r = S —>• 0 into (59). Further, because of (55) we can replace the stress tensor <Ti{ui) by of(ui)- Taking into
account that the area element dsx on T$ is given by

dsx = ö(l — 6 cos(cü)k(s))dtüdsi

where k(s) dénotes the curvature of the crack front M at the point with the arclength 5, we obtain

i~1dTsnai

ƒ (^(«i)^ • ̂ ,3. - Ui ' a^i

(

O(r)
\fc=l

2 3

èƒ

dsx

_

Cj(s) • h(s)ds.
•I=LM K=i M

Hère we have used the biorthonormahty condition (57) and the fact that <JO is linear with respect to functions
depending only on the variable s Le. ao(c(s)u(r,LU)).= c(s)ao(u(r,a;)). D

Theorem 6.3. Suppose that the assumptions of Theorem 6.1 are satisfied. Let {W^^W^j) be a solution of the
three-dimensional transmission problem (7) with vanishing right-hand sides, which admits a décomposition

3 = 1,2,3 (60)
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with w^j" G [i?1(f2i)]3, i = 1, 2. Then the following formula holds

J Cj(3)-h(s)ds = E ƒ ƒ* * ™fjdx + ƒ 9i • ViiW&fUds* ~ J ' h i - W^dsx
M

 i=1 \fii rf rf /

+ ƒ (pi ' t7i(W^)«l " P2 - W ^ ) d5x. (61)
r

Proof. Inserting the décomposition (60) into the three-dimensional problem (7) with vanishing right-hand sides
we conclude that the functions (w^^it;^) sa^isfy the transmission problem

w
r.J = _\&fc on

= - (cri (*£,•) ni + a2 (*^-) n2) on T.

(62)

Because of (55) the right-hand sides of (62) are regular enough and the transmission problem (62) has a unique
solution {W^JW^J) which belongs to [iJ1(Qi)]3 x [iï1(Q2)]3. The proof of formula (61) is analogous to the
proof of formula (58). •

REFERENCES

[1] I. Babuska and A. Miller, The post—processing approach in the finite element method, Part 2: The calculation of stress intensity
factors. Internat. J. Numer. Methods Engrg. 20 (1984) 1111-1129.

[2] I. Babuska, T. von Petersdorff and B. Andersson, Numerical treatment of vertex singularities and intensity factors for mixed
boundary value problems for the Laplace équation in R3. SI AM J. Numer. Anal 31 (1994) 1265-1288.

[3] M. Bourlard, M. Dauge, M.-S. Lubuma and S-.' Nicaise, Coefficients of the singularities for elliptic boundary value problems
on domains with conical points III: Finite element methods on polygonal domains. SIAM J. Numer. Anal 29 (1992) 136-155.

[4] H.F. Bueckner, A novel principle for the.computation of stress intensity factors. ZAMM 50 (1970) 529—546.
[5] H.F. Bueckner, Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space. Internat.

J. Solids and Structures 23 (1987) 57-93.
[6] M. Costabel and M. Dauge, General edge asymptotics of solutions of second-order elliptic boundary value problems I, II. Proc.

Roy. Soc. Edinburgh A 123 (1993) 109-155, 157-184.
[7] M. Costabel and M. Dauge, Computation of corner singularities in linear elasticity, in Boundary Value Problems and Intégral

Equations in Nonsmooth Domains, M. Costabel, M. Dauge, S. Nicaise Eds., Marcel Dekker Inc. (1995).
[8] M, Dobrowolskij Numerical Approximation of Elliptic Interface and Corner Problems. Habilitationsschrift, University of Bonn

(1981).
[9] G.C. Hsiao, B.N. Khoromskij and W.L. Wendland, Boundary intégral operators and domain décomposition. Preprint 94—11,

Mathematisches Institut A, Universitât Stuttgart (1994).
[10] G.C. Hsiao and W.L. Wendland, The Aubin-Nitsche Lemma for intégral équations. J. Intégral Equations 3 (1981) 299-315.
[11] G.C. Hsiao and W.L. Wendland, Domain décomposition in boundary element methods, in Domain Décomposition Methods

for Partial Differential Equations, R. Glowinski et ai Eds., SIAM (1991) 41-49.
[12] C. Hwu, C.J. Kao and L.E. Chang, Delamination fracture criteria for composite laminâtes. J. Composite Mat. 29 (1995)

1962-1987.
[13] M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics. Oxford University Press, New York (1985).
[14] S.N. Karp and F,C, Karal, The elastic-field behaviour in the neighbourhood of a crack of arbitrary angle. Comm. Pure Appl

Math. 15 (1962) 413-421,
[15] V.A. Kondrat'ev, Boundary problems for elliptic équations in domains with conical or angular points. Trans. Moscow Math.

Soc. 16 (1967) 209-292.
[16] A. Kufner and A.-M, Sândig, Some Applications of Weighted Sobolev Spaces. Teubner, Leipzig (1987).
[17] M. Lenczner, Méthode de calcul du coefficient de singularité pour la solution du problème de Laplace dans un domaine diédral.

Math. Modell Numer. Anal. 27 (1993) 395=420.



878 M. BOCHNIAK AND A.-M. SÂNDIG

[18] K.M. Liu, K,M. Lee and C.K. Pan, Numerical techniques for determining stress intensity and higher order factors using the
fmite différence methods, in Computational Méchantes '95 Vol. 2, S.N. Atluri et al. Eds., Springer Verlag, Berlin (1995).

[19] V.G. Maz'yai and B.A. Plamenevsky, On the coefficients in the asymptotics of solutions of elliptic boundary value problems in
domains with conical points. Math. Nachr. 76 (1977) 29-60.

[20] V.G. Maz'ya and J. Rossmann, Uber die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von
Kanten. Math. Nachr. 138 (1988) 27-53.

[21] S.A. Nazarov, Dérivation of the variational inequality for small increase of mode—one crack. Mech. Solids 24 (1989) 145-152.
[22] S.A. Nazarov and B.A. Plamenevsky, The Neumann problem for selfadjoint elliptic Systems in a domain with pièce wise-s moot h

boundary. Amer. Math. Soc. Transi (2) 155 (1993) 169-206.
[23] S.A. Nazarov and B.A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter,

Berlin (1994).
[24] S. Nicaise and A.-M. Sàndig, General interface problems I, IL Math. Methods Appi Sel 17 (1994) 395-429, 431-450.
[25] S. Nicaise and A.—M. Sàndig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary intégral

formulation. Math. Models Methods AppL Sci. (to appear).
[26] J.R. Rice, Some remarks on elastic crack-tip stress fields. Internat. J. Solids and Structures 8 (1972) 751-758.
[27] J.B. Rosser and N. Papamichael, A power series solution of a harmonie mixed boundary value problem. MRC Technical

Summary Report number 1405 (1975).
[28] J. Rossmann and A.-M. Sàndig, Formulas for the coefficients in the asymptotics of solutions of boundary value problems for

second order Systems near edges. ZAMM 76 Suppl 4 (1996) 181-184.
[29] H. Schmitz, K. Volk and W. Wendland, Three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial

Differential Equations 9 (1993) 23-337.
[30] T.L. Shan and H.F. Biickner, The weight function theory for piecewise homogeneous isotropic notches in antiplane strain. J.

AppL Mech. 55 (1988) 596-603.
[31] O. Steinbach, Gebietszerlegungsmethoden mit Randintegralgleichungen und effiziente numerische Lösungsverfahren fur gemi-

schte Randwertprobleme. Dissertation, Universitât Stuttgart (1996).
[32] O. Steinbach, On the realization of boundary element methods for mixed boundary value problems. Preprint 98/07, SFB 404,

Universitât Stuttgart (1998).
[33] O. Steinbach and W.L. Wendland, Domain décomposition and preconditioning techniques in boundary element methods, in

Boundary Element Topics, W.L. Wendland Ed., Springer Verlag, Berlin (1997) 473-492.
[34] B.A. Szabo and Z. Yosibash, Numerical analysis of singularities in two dimensions, Part 2: Computation of generalized

flux/stress intensity factors. Internat. J. Numer. Methods Engrg. 39 (1996) 409-434.
[35] M.L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J.

Appl. Mech. 19 (1952) 526-528.
[36] M.L. Williams, The stresses around a fault or crack in dissimilar media. Bull. Seismol. Soc. Amer. 49 (1959) 199-204.
[37] L.S. Xanthis, M.J.M. Bernai and C. Atkinson, The treatment of singularities in the calculation of stress intensity factors using

the bouiiiiai* y intégral équation method. Compui. Methods Appl. Mech. Engrg. 26 (1981) 285—304.

Reçu le -2 — 1999


