Existence of a solution for a nonlinearly elastic plane membrane “under tension”
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 5, p. 1019-1032
@article{M2AN_1999__33_5_1019_0,
     author = {Coutand, Daniel},
     title = {Existence of a solution for a nonlinearly elastic plane membrane ``under tension''},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {5},
     year = {1999},
     pages = {1019-1032},
     zbl = {0966.74043},
     mrnumber = {1726722},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_5_1019_0}
}
Coutand, Daniel. Existence of a solution for a nonlinearly elastic plane membrane “under tension”. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 5, pp. 1019-1032. http://www.numdam.org/item/M2AN_1999__33_5_1019_0/

[1] S. Agmon A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964) 35-92. | MR 162050 | Zbl 0123.28706

[2] P.G. Ciarlet, Mathematical Elasticity, I, Three-Dimensional Elasticity. North Holland, Amsterdam (1988). | MR 936420 | Zbl 0953.74004

[3] P.G. Ciarlet, Mathematical Elasticity, II, Theory of Plates. North Holland, Amsterdam (1997). | MR 1477663 | Zbl 0953.74004

[4] P.G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258. | MR 533827 | Zbl 0405.73050

[5] D. Coutand, Existence d'un minimiseur pour le modèle "proprement invariant" de plaque "en flexion" non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 245-248. | MR 1438393 | Zbl 0873.73078

[6] D. Coutand, Théorèmes d'existence pour un modèle "proprement invariant" de plaque membranaire non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 1181-1184. | MR 1451944 | Zbl 0882.73035

[7] D. Coutand, Existence of a solution for a nonlinearly elastic plane membrane subject to plane forces. J. Elasticity 53 (1999) 147-159. | MR 1705408 | Zbl 1083.74530

[8] J. Diestel and J.J.Jr. Uhl, Vector Measures. Math. Surveys, AMS 15 (1977). | MR 453964 | Zbl 0369.46039

[9] D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal 124 (1993) 157-199. | MR 1237909 | Zbl 0789.73039

[10] G. Geymonat, Sui problemi ai limiti per i sistemi lineari ellitici. Ann. Mat Pura Appl. 69 (1965) 207-284 | MR 196262 | Zbl 0152.11102

[11] A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press (1968). | MR 245245 | Zbl 0155.51801

[12] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR 1365259 | Zbl 0847.73025

[13] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967). | MR 227584