Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 5, p. 1033-1056
@article{M2AN_1999__33_5_1033_0,
     author = {Amara, Mohamed and Bernardi, Christine},
     title = {Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {5},
     year = {1999},
     pages = {1033-1056},
     zbl = {0956.76040},
     mrnumber = {1726723},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_5_1033_0}
}
Amara, Mohamed; Bernardi, Christine. Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 5, pp. 1033-1056. http://www.numdam.org/item/M2AN_1999__33_5_1033_0/

[1] M. Amara, M. Ben Youne and C. Bernardi, Error indicators for the Navier-Stokes equations in stream function and vorticity formulation. Numer. Math. 80 (1998) 181-206. | MR 1645033 | Zbl 0914.76046

[2] M. Amara and F. El Dabaghi, An optimal C0 finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results. Numer. Math. (submitted). | Zbl 0997.65133

[3] M. Ben Younes, Méthodes d'éléments finis avec joints pour le problème de Stokes en formulation fonction courant - tourbillon. Ph. D. thesis, Université Pierre et Marie Curie, France (1997).

[4] C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. | MR 1639966 | Zbl 0913.65007

[5] C. Bernardi, V. Girault and Y. Maday, Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12 (1992) 565-608. | MR 1186736 | Zbl 0753.76130

[6] C. Bernardi and Y. Maday, Mesh adaptivity in finite elements by the mortar method. Internal Report 94029, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, France (1994).

[7] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | MR 1268898 | Zbl 0797.65094

[8] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR 595803 | Zbl 0488.65021

[9] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1991). | MR 1115237 | Zbl 0875.65086

[10] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equations Operator Theory 15 (1992) 227-261. | MR 1147281 | Zbl 0767.46026

[11] V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33 (1979) 235-271. | MR 553589 | Zbl 0396.65070

[12] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[13] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. | MR 524511 | Zbl 0427.65073

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR 775683 | Zbl 0695.35060

[15] R. Scholz, A mixed method for fourth order problems using linear finite elements. RAIRO Anal. Numér. 12 (1978) 85-90. | Numdam | MR 483557 | Zbl 0382.65059