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OPTIMAL ERROR ESTIMATES FOR THE STOKES AND NAVIER-STOKES
EQUATIONS WITH SLIP-BOUNDARY CONDITION

EBERHARD BÀNSCH1 AND KLAUS DECKELNICK2

Abstract. We consider a finite element discretization by the Taylor-Hood element for the stationary
Stokes and Navier-Stokes équations with slip boundary condition. The slip boundary condition is
enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimâtes
in the H1 and L2 norms for the velocity and pressure respectively.
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1. INTRODUCTION

We consider the stationary Navier-Stokes équations: given a bounded domain î7ÇMd, d — 2 or d = 3, find
a velocity field w, a pressure p such that

- — A u + (u-V)u + Vp = ƒ in Q . ,
Ke (1.1;

div u — 0 in Q

as well as its linear counterpart, the Stokes équations:

~ h A u + Vp = f i n 0 (i.2)
divti = 0 in il

together with the slip boundary condition

u-n = 0 ondft. (1.3)

To this boundary condition we have to add a condition on the tangential stresses, for instance

n - a(U)P)ri = 0 on ÔQ, i = 2, . . . ,d. (1.4)
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Here, Re dénotes the Reynolds number, n, r̂  the normal and tangential vectors on dfl and

is the stress tensor with

the déformation tensor.
Boundary conditions (1.3, 1.4) play an important role in many physical situations, in particular for free

boundary problems. We mention:
• coating flows, see for instance [11,16],
• flow in semiconductor melts, see e.g. [10,17].

In contrast to the Stokes and Navier-Stokes équations with Dirichlet boundary condition there seems to be
rather few work concerned with numerical analysis of this problem with slip boundary condition. In [20] Verfürth
proved error estimâtes for the discretization of (1.1-1.4) by the popular Taylor-Hood element and a polyhedral
approximation fi^ of the domain Cl. Verfürth gave a non optimal error bound of ö{hx^2) in the H1 and L2 norm
for the velocity and pressure respectively. In [21,22] the same author proposed and analyzed a discretization
where the slip boundary condition is enforced in a weak sense by Lagrange multipliers. Numerically, however,
in most cases it is more convenient to use a discretization, where the slip boundary condition is incorporated in
the ansatz space, see also [2].

The present article therefore analyzes a discretization of this type for the Taylor-Hood element. We improve
the result from [20] to the optimal error bound ö(h3/2) for the velocity and the pressure in H1 and L2 norms
respectively for a polyhedral approximation of fi.

The paper is organized as follows: In Section 2 the finite element formulation and some notations are given.
In particular, we introducé a homeomorphism Gh which maps the discrete domain fth onto ft. We prove optimal
error estimâtes for the Stokes problem in Section 3. The key idea is to transform the discrete solution via Gh
onto the original domain fl and to carry out the error analysis on il. We thereby avoid error terms which
involve intégration over the discrete boundary dÛh- In Section 4 optimal error bounds are also obtained for
the nonlinear Navier-Stokes équations in case of small Reynolds numbers. Section 5 concludes the article by
presenting numerical results.

Remark 1.1. After having fmished this paper we got to know about a related recent paper by Knobloch [12].
He considers the Stokes équations allowing both slip and no-slip boundary conditions. For a tetrahedral ap-
proximation of fi and finite element spaces (including the Taylor-Hood element) satisfying suitable assumptions
he obtains optimal orders of convergence. Our technique however is different from his in that we use the trans-
formation Gh in order to carry out the analysis on ft which simplifies the calculations considerably. A further
différence is that we also treat the nonlinear problem and support our analysis by a numerical example.

2. FINITE ELEMENT FORMULATION

In the following we assume for simplicity that fi has no axis of symmetry. This will be needed to insure
ellipticity of our problem, see (2.3) below.

In order to dérive a variational formulation of (1.2-1.4) the momentum équation in (1.2) is multiplied by a
function v G iî1(fi;R3) and integrated by parts:

/ ( Au + Vp) * v = —— / D(u) : D(v) — / pdivv — n • a(u,p)v
Ja Re 2R-e Ja Ja Jda

= / D(u) : D(v) — / pdivv — / (n • a{u,p)n)v • n,
2Re JQ Jn JQQ

(2.1)
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where the last equality follows from (1.4). Now it is natural to introducé the following bilinear forms:

^He Jn

b(v7q) ~ - f qdivv for v G iJ^fijK3), q G L2(Q)
Jn

as well as the function spaces

X := {v€H1(n]R3)\vn = 0 on 9ÎÎ}

M := {qe L2(Ü) \ [ q = O}-

The weak formulation of (1.2-1.4) then reads: find (u,p) G X x M such that

a(u,v) + b(v,p) = (ƒ, f) for all v G X

6(u,g) = 0 fora l lgGM

where (/,v) = fn fvdx dénotes the L2 inner product. Note that a weak solution which is smooth is also a
solution of (1.2-1.4). Both existence and uniqueness of a weak solution follow from Korn's inequality, see (3.4)
below

IMIjïi(n) ^ C f D(v) : D(v) for all v e X, (2.3)
Jn

the Babuska-Brezzi condition

inf sup „ ^V\?\ > ü > 0 (2.4)
qeM\{o} veX\{0} IM|iïi||g||z,2

and the gênerai theory of saddle point problems, cf. [5,9].
Regularity properties of (u,p) were studied for instance in [18], in particular we have

n ) iffiisofclassC4 . (2.5)

Next, let us dénote by Th a finite set of straight, closed d-simplices which triangulates a domain

f
fefh

in such a way that all vertices on dÙh also lie on 9Q. Dénote by h(T) ~ diam(T) the diameter of T and by p(T)
the radius of the largest bail inscribed T. We make the usual assumption of shape regularity, ie . for a family of
triangulations (Th)h we assume that

h(f)
sup max . < K, < oo.

h fefhp(T)
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For every T G Th there exists an invertible affine mapping

Ff : Rd -> Rd
y Ff(x) = Afx + 6^,

which maps the standard d-simplex T onto T. Besides the triangulation Th which will be used to define the
discrete problem and to carry out the practical computations we also introducé an exact triangulation Th of ft.
The existence of such a triangulation together with the associated interpolation estimâtes is proved in [4,13]. In
essence, for every f e Th there is a mapping <&f G C3(f;Rd) such that Ff :~ Ff + <&f maps f onto a curved
d-simplex T Ç O and

n= u T-
Terh

Furthermore, the mapping Gh which is locally defined by

Gh\f : = FfoFf1

(see Fig. 1) is a homeomorphism between Çl h and fï. The construction in [4,13] also implies that <frf — 0 if T
has at most one vertex on dÙh, so that G h = / on all simplices which are disjoint from dÙh- Finally, we have
the estimâtes

sup \\{DGhlf - I)(x)\\ < Ch(f), UGfclU^t) < C
xef

sup \\DFt(x)\\ < C\\Atl sup \\DF^(x)\\ < G\\Az}\\ (2.6)
x e f ^ T

c i | d e t ^ | < | d e t D F f { x ) \ < c 2 | d e t Af\, x e f

for all f G %. In particular, v e H1^) if and only if v o Gh G H1^) and

Let us turn to the définition of the finite element spaces which we shall use. We dénote by Mh the union of the
set of all vertices of Th with the set of all midpoints of edges of <i=-simplices in Th- Then we define

Xh := {vh G C°(Ûh;R
d) \vhlte V2(T)d, vh{p) • n(Gh(p)) = O Vp G Afh n dÙh}

and

Mh:={qheC°(Ùh)\qhif£'Pi(T), f qh = 0}

that is we use the so called Taylor-Hood element and enforce the slip boundary condition pointwise in all
boundary vertices and midpoints. Note that the normal n appearing in the définition of Xh is the normal to
the domain fi. Defining üh - Xh x Xh —> M, bh : Xh x M^ —y R by

ah(uh,vh) := r ^ - ƒ D(uh) : D(vh)
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A

T

FIGURE 1. T, T and T at the boundary.

the discrete analogy of (2.2) reads: find (uh,Ph) such that

ah(uh)vh) + bh(vhjph) =

= 0

for ail ufc €

for all ^ G
(2.7)

where ƒ := ƒ o GV It follows from [20] that (2.7) has a unique solution for ail 0 < h < ho with ho small enough.

Remark 2.1. Since the Babuska-Brezzi condition can be proved for the Taylor-Hood element without using
an inverse estimate, see [15], we do not assume quasi uniformity for the triangulation 7L Thus our analysis is
valid also in the case of adaptively refined meshes.

Remark 2.2. We have introduced ƒ above because we do not want to overburden the error analysis with the
approximation of /^ ƒ • v^. This can be done with the help of a suitable quadrature rule under appropriate
regularity assumptions on ƒ (cf. [7]: Chap. 4, Sect. 4.1).

3. PROOF OF THE ERROR ESTIMATE

One problem of the error analysis lies in the fact that (u,p) and (uf^Ph) a r^ defined on different spaces. To
overcome this difficulty we assign to each (vh,qh) E X^ x Mh the pair

{vh,qh):=

Note that in gênerai vn & X since Vh' (no G h) only vanishes in the points of Mh- Inserting Vh into (2.1) we get

a(u,vh) + b(vh>p) = f-Vh+ I (na(u,p)n) vh • n , vh e Xh.
Ja Jdo,
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Combining this identity with (2.7) we obtain the following error relation for (u — üh,V — Ph)'-

a(u — ühjVh) + b(vh,p — ph) = ^h(uh,Vh) — a{üh)Vh) + bh(vh,Ph) — b(vh,ph)

+ f 'Vh~ f-vh+ (na{u,p)n) vh • n (3.1)
Jn Jûh Jan

b(u — üh, qh) = bh{uh-> qh) ~~ b(üh, Qh)

for all vh G Xhi qh G Mh.
Before we can apply well-known results on the approximation of saddle point problems we need suitable

discrete analogies of the ellipticity condition and the Babuska-Brezzi condition.
The following lemma will be very helpful in the subséquent analysis.

Lemma 3.1. There exists h\ > 0 such that for all 0 < h < h\ and all Vh G X^

\\vh • n\\L2{dÇÎ) <chi\\vh\\Hi{n).

Proof Let us dénote by T® the set of all simplices in Th which have a (d — l)-face on 9O. The transformation
rule and (2.6) imply

r p r

/ \vh - n\2 = ^2 ƒ \(vh ° G^1) • n\2 < c V^ / \vh-(no Gh)\2-
Jan Tera ^dQnT TeTa ^d^nf

Let us fix T G 7̂ f and put f := dÙh H T. In view of the définition of Xh we have -^(^if • (^ ° Gh)if>) = 0
where ï\ dénotes the Lagrange interpolation operator for polynornials of degrcc two. If we apply a well-known
interpolation resuit (cf. [7]) we get

f\vh-(noGh)\
2 = [\vh-(noGh)-I

2
h{vh-(noGh))\

2

Jf Jf

< ch(ff [\D3((vh-(noGh))lf)\
2.

Jr

Observing that vh^ G ̂ (f1) as well as d£l G C4 and using (2.6) we may estimate

[\D\vh-{noGh))\
2 <

Jr

< ch(fy^

in view of the inverse estimâtes

(f) < ch(f)-i\\vh\\L2(f),
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In conclusion

< c E h(f)3\\vh\\
2
H1(f) < ch3

 E I I ^ I I W ) ^ HW
T e 7 - a

and the lemma is proved. •

Note that we made use of the inverse estimate only locally, hence we do not need a quasiuniformity assumption
on the triangulation.

The above result should be compared to Lemma 3.1 in [20] where the author obtained the boundary estimate

), vh e Xh

which then led to the suboptimal error bound ö{h^). By employing the transformation G h we are able to
improve this estimate and this will turn out to be crucial in the proof of the optimal convergence rate.

The next lemma estimâtes the effect of the transformation on the bilinear forms.

Lemma 3.2. There exists h2 > 0 such that for all 0 < h < h2 and for all Vh, Wh G

(a) \a(vhiwh) - ah(vh,wh)\ < c

Proof Note first that Gh = I on all simplices which are disjoint from dQ,h- Then the first assertion can be
proved in the same way as Lemma 8(ii) in [13].

In order to show (b) we first estimate JQ qn o G^1. Observing that J^ qh = 0 we get

Lqh
/ ^ o G - h

x

feoG*1+ ^ L
Tnan=0 L

= E (L<ïh\detGh\- fqh)
in view of the transformation rule. From (2.6) and Hölder's inequality we obtain

< c E h(f)f\qh\<C E h(f)i+1\\qh\\L2{t)
Tnan#0 T Tnan^0

< c( E Hf)d+2)i\\qH\\LHnh)<^\\qhoG^\\L

< chi\\qh\\L2{n)^chi\ f qhoG^\
JQ
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since qh o G^1 = qh-\- — / qh o G^1 and
l"l Jn

~ -1 < cHd"1(dÜh) < cUd-1(d0) (3.2)

with Hd~1 the (d — l)-dimensional Hausdorff measure. Summarizing the above considérations we get for suffi-
ciently small h^

[ ^ H ) (3.3)
n

and therefore

\b(vh,qh) - bh(vhiqh)\ < \b(vh, qh o G^1) - bh{vh,qh)\ + c\\vh\\Hiin) \ / qhoG^1].
Jn

Estimating the first term again similarly as in Lemma 8(i) in [13] the result follows from (3.3), D

Next we obtain discrete versions of the conditions (2.3, 2.4).

Lemma 3.3. There exists /13 > 0 such that for all 0 < h < h3

(a) a(vhivh) > co\\vh\\
2
H1{Q), vh G Xh

(6) inf suP ., xx
m\*h\ > ff > 0.

€M\{0} VhSXh\{0} l^hWm^WQhW2^)

Proof (a) Korn's second inequality {cf. [14]) together with the PoincaréHVÏorrey inequaiity (cf. [21]) impiies

(v) : D(v) + \\v\\hW) < c(jT D{v) : D(v) + J^ \v • n\2) (3.4)

for all v € /Z"1(fi;IRd). Applying this estimate to Vh and using Lemma 3.1 we arrive at

which gives (a).

(b) According to [20] the following condition is valid:

mf sup T.—ü ~.—n— > P >0.
M\{o}VheXh\{o} \\vh\\Hi{cih)\\qh\\L2{nh)

The assertion now follows from Lemma 3.2b if we observe that ll^llf/i^), Hufc||jïi(nh)
 anc^ l|ç/

are equivalent norms for Vh<> qh respectively. •

Now we are in position to prove the main result of this paper.

Theorem 3.4. Let (u,p) be the solution of (1.2-1.4) and (uh^Ph) the solution of (2.2). Then there exists /i4 > 0
such that for all 0 < h < h^

WU-ÜHWHUU) -\-\\p-Ph\\LHQ) < ch*\\f\\Hi(Q)<
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Proof. As we do not have {vh | Vh £ Xh} c X we consider both spaces as subspaces of iJ1(17,Md). From
Lemma 3.3 we infer

h(- - \ (3.5)
ÖlVh Qh ) '

SUp — > y0'||^||L2(r2)) f ° r a ^ Qh ^ -M/i.

^h€Xh\{o} Ffe||ffi(n)

Using the techniques in Section IL2 in [5] we conclude from the error relation (3.1, 3.5)
5

\\u-üh\\Hi(Q) + \\p-ph\\Li(Sï) < c\v
inl. \\U-Vh\\m(n) + inf̂  \\p - qh\\L2(n) +2-^Mi,hJ (3.6)

where
Mlth = sup ^—TTZ-^T

vhexh\{o} \\Vh\\imn)

h(vh>Ph) -b(vh,Ph)
M2ih = sup

vhexh\{o}

M3)/l = sup
vh£Xh\{0}

\fm(na(u,p)n) vh • n\
sup °

vhexh\{o}
\bh(tsup ——

In the following we estimate the various terms occurring on the right hand side of (3.6).
To begin, let us dénote by 1% the usual Lagrange interpolation operator on Ûh for polynomials of degree two

and define Wh := I^{u o Gh)- Clearly, Wh e Xh and

\\uoGh-wh\\H1(f) <ch(f)2\\D3(uoGh)\\L2(fv feth.

Transforming to Q and using (2.5, 2.6) we get

\W-Wh\\Hi{n) = ^5Z \\u ~

< ch2

Arguing similarly for the pressure we arrive at

inf \\u — VhWwin) + ml> \\p '
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Next, Lemma 3.2 gives

< ch\\u-üh\\HiiQ)+ch[

< ch\\u-üh\\Hi{Q)+c\\u\\CHU)h(

< ch\\u - üh\\Hi(ty + ch* I| ƒ ||j

where we used the continuous embedding iJ3(f2) ^ C1(Ö), (3.2) and (2.5). Similarly

M2,h < ch\\p - phWmn) + chi \\ f \\w(n).

Prom the définition of ƒ and the fact that Gh = I on all simplices which are disjoint from dÙh we infer

\ f f ' V h - f f'Vh\ - | V f(foGh)-vh(\detDGh\-l)\
Jn Jh- fnan^Jf

\\foGh\\L*{f)\\Vh\\mf)

In view of the embedding i/1(Q) <^ L4(Q) we obtain

where £rf dénotes the d-dimensional Lebesgue measure.
Using the same argument for Vh we arrive at

f - f ~
/ f'Vh- / ƒ -Vhl <

Jn Jüh

for all Vh. G X^ which implies

Ms,h <ch%\\f\\Hi{n).

Employing Lemma 3.1 we get

| / (na(u,p)n)vh'n\ < c(\\u\\Ci{ù) + \\p\\co{ù))\\vh - n\\L2{dn)
JdQ

< ch

and therefore



NAVIER-STOKES EQUATIONS WITH SLIP-BOUNDARY CONDITION 933

Finally, it follows in the same way as above

Combining the above estimâtes and choosing h^ small enough the result follows. D

4. ERROR ESTIMÂTES FOR THE NONLINEAR PROBLEM

In this section we extend our error analysis to the Navier-Stokes problem (1.1, 1.3, 1.4). The discrete problem
now reads: find (uh7ph) G Xh x Mh such that

ah(uh,vh) + bh(vh,ph) + Nh(uh,uh,vh) = / ƒ • vh for all vh E Xh

Jûh (4.1)
bh{uh,qh) — 0 for all qh e Mh.

Here, Xh, Mh, ah and bh are the same as in Section 2 while Nh is defined by

Nh(uyv,w) := - / (((u-V)v)w- ((u-V)w)v), uyv,w e H1 (Ù^B?).
2 Jfih

 v y

It is well-known that (1.1, 1.3, 1.4) has a unique solution (u,p) G i/3(Q;Md) x iJ2(ri) provided

c(fi) (4.2)

with some constant c(fl) > 0 depending on the domain O.
Furthermore,

||«||Hi(n) < cRe| | / | | i a ( n ) . (4.3)

In what follows we assume that (4.2) holds. We shall use a quantified version of Newton's method in order to
dérive an error bound for the velocity.

Theorem 4.1. Let X,Y be Banach spaces, u0 € X, R > 0 and F G ^(B^UQ)^). Assume that DF(u0) is
an isomorphism of X onto Y with WDFfao^1^^^) < 7? that \\DF(UO)~1F(UQ)\\X < e and that

\\DF(u) - DF(v)\\L{XtY) < K\\u - v\\x for all u, v G BR(u0).

If

2e < R, 2Ke-y < 1 (4.4)

then the problem F(u) = 0 has a unique solution u* G B2e(uo)-

Proof See Theorem 15.6 of [8].

Let us now apply the above result to our situation. We set X = Y = if1(Q;IRd). Let Th G L(X/
h^Xh) be the

discrete Stokes operator which assigns to every g& G Xf
h the velocity Uh G iJ^Ö/^ffi^) of the unique solution

(uhiPh) G Xhx Mh of

a>h{uh,vh) +bh(vh,Ph) = {ghiVh) for ail vh G Xh

bh{uh,qh) = 0 for ail qh G Mh.
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Here, {.,.) dénotes the duality between X'h and Xh. We define the mapping Fh : H1^^) -> Hl(nyR
d) as

follows: for a given v G H1^^) let

u>h = Th(foGh- Nh(v oGh,vo Gh}

and set

Fh{v) :=v~who G^1 = v - wh.

Clearly, UH is a solution of (4.1) if and only if Fh(üh) = 0.
Now we are in position to formulate the main resuit of this section.

Theorem 4.2. Let (u,p) be the solution of (1.1, 1.3, 1.4)- V Re||/||L2(fi) ^s sufficiently small, there exists
h§ > 0 such that for all 0 < h < h§ (4.1) has a unique solution (uh.Ph) which satisfies

Proof. Clearly Fh G Cl(B1(u);H1(Q;Rd)) and DFh{u) - I - Sh with 5^ e Z,(fl"1(nïRd))- From t h e uniform
ellipticity of ah (which follows from Lemma 3.2 and Lemma 3.3), the uniform continuity of N& on i/^njIR^)3

and (4.3) we conclude that WShWLiH1^)) < 1/2 provided Re|| ƒ \\L2(Q) is small enough. Therefore, DFh(u) is an
isomorphism of H1^; Rd) and

\\DFh(u)~1\\L(Hi(Q)) < 7 uniformly in h. (4.5)

Next, we want to estimate ê  := Hi^^Hjji. According to the définition of Fh we may write Fh{u) — u — Wh
where Wh G Xh is the solution of the following problem:

a>h(wh,vh) + bh(vh,ph) = / f oGh'Vh -Nh{uoGh,uoGhyvh) for all vh e Xh

bhiwhiCh) = 0 for all qh G Mh.

Since (u,p) is a solution of (1.1, 1.3, 1.4) we also have

a(u,v) + b{v,p) — I f -v — I (u- V)u - v for all v G X
Ja Jn

b(wyq) = 0 for all q G M.

Just as in the proof for the linear case we may now deduce an error relation for u~Wh'

a(u-Wh,Vh) +b(vh,p-ph) = a>h{wh,Vh) -a(wh>Qh) +bh{vh,ph) -b(vh,ph)
+ ƒ ƒ • Vfc - / ƒ'oGh-Vh+ f (na(u,p)n) vh • n

Jn Jüh Jan
- / (u • V)u - vh + iVh(uoG^uo G/,,uh) (4.6)

Ja
b(u - whi qh) = bh(wh, qh) - 6(töfc, qh)

for all vft G Xhj qh G M/,.
From Lemma 4.3 below for the case w = uoGh we infer

[ fQ(u - V)ix • vh - Nh(uoGh,uo Gh,vh)\ i
sup , j _ M S CA2 .
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Combining this estimate with the argument in Theorem 3.4 we arrive at

eh = \\Fh(u)\\Hi{n) = \\u - wh\\Hi(a) < chi

which together with (4.5) implies

||I>Fh(tt)-1i!'h(tt)|Ui(n)<7||Ffc(tt)||Hi(n)<cAiî. (4.7)

Furthermore, it is not hard to prove that

\\DFh(v) - DFh(w)\\L{Hi{Q)) < K\\v - w\\Hr{n) for aUt;,«>6 B^u). (4.8)

Prom (4.5, 4.7, 4.8) we see that (4.4) is satisfied provided 0 < h < h$ and Theorem 4.1 implies that the équation
ords

< chi. (4.9)

( ) ( )
Fh(v) = 0 has a unique solution % G S 3 (u) or in other words

Furthermore, Uh~Uh° Gh solves (4.1).
Before we give a corresponding bound for the pressure we prove a lemma which deals with the nonlinearity

and which has already been used above.

Lemma 4.3. Let (u,p) e jff3(fi,Rd) x H2(Cl) be the solution of (1.1, 1.3, 14) and w G Hl(Ûh,R
d). Then

sup n n - \ ^ ^ ^CWU-WOG^WHIÜIUWHI + HtyoG^1!!^) +chi.

vh£Xh\{0} \\Vh\\m
Proof. Using intégration by parts together with (1.3) we get

/ (u - V)w • Vh — - I (u • V)u * Vh — — / (u - *V)vh - u
JQ 2 Jn 2 Jn

so that

/ (u • V ) u • Vh — Nh{u)yw,Vh) — - ( I {u- V)u -Vh — I (w • V)w - Vh)
Ja 2 ^Jn, Jùh '

1 / f _ f \
( / \ u ' ^föh ' IA — / yW ' ^)Vh ' VJ \ .

2 V /o /ô /

The transformation rule and (3.2) imply
/ (u • V)tt -Vh- (w- V)IÜ -vh\ = \ (uoGh- V)u o Gh • vh\detGh\ ~ (w •
Q Jnh Jùh Jâh

V)u oGh'Vh-(w- V)w • vh)
J

\vh\

c||it - w o G^1)!^! (\\u\\Hi + ||tü o
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Here we also employed the continuity of the trilinear form (u7v7w) ^ J^ (u • V)u • w on (iJ1(^/l)M
d)) . The

second term can be treated in the same way and the lemma follows. D

In order to obtain the pressure bound we now write down an error relation analogous to (4.6) with u — WH
replaced by u — üh and Nh(u o Gh,u o Gh^h) replaced by Nh{uh,Uh,Vh)- Observing that ||ufc||ifi < cRe||/||L2
Lemma 4.3 implies

1 Jn(u - V)u • vh - Nh(uh, uh, vh)\ _ 3
- ^ rr—r < c\\u - Uh\\HlfQ\ + ch *

WVHWHHQ)

so that the argument in Theorem 3.4 gives

SUP
vhexh\{0}

\\P-Ph\\mn) < chi.

This concludes the proof of Theorem 4.2. D

5. NUMERICAL RESULTS

From a numericai point of view it is quite simple to treat the boundary condition incorporated in Xh, see
also [2], If one uses itérative methods to solve problem (2.7) or (4.1) (for example itérative solvers based on the
Schur complement, see e.g. [2,6,19]), then the core method consists of solving the elliptic problem

h) = (x,vh) for all vh e Xh (5.1)

with some right hand side x- Now consider

Xh := {Vh e C°(Üh]R
d) \vhlfG V2(f)

d}

the space of all piecewise quadratics (without enforced boundary condition). With VH ̂  Xh we associate its
représentation by a vector of nodal values v = {vp}p — {v^ v^v^}v Ç J£h such that

with {ipp}p the nodal basis of Xh, ie .

Wp{q) = àpq for sllq E J\fh.

Accordingly define

2Lh := {v G X_h | vp . np = 0 Vp € Mh n d(lh }

where np = n(Gh(p))- Define the projection P : X_h —> X_h by

_ ƒ vp-vp<npnp ifp€j\fhC\ d&h

{ vp else

and the operator Ah : 2Lh —> X_h by

a>h(vh,wh) = (Ahv,w)M3N for all vh,wh G Xh.
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TABLE 1. Numerical results for 5 x 3 bisection steps.

level

0

3

6

9

12

15

| tetrahedra

6

48

384

3072

24576

196608

| nodes

27

125

729

4913

35937

274625

\\u>h ~u\\Hi

0.6985E+01

0.4607E+01

0.1566E+01

0.4530E+00

0.1224E+00

0.3301E-01

EOC
—

0.60

1.56

1.79

1.89

1.89

WPh-ph*
0.1976E+02

0.8430E+01

0.2543E+01

0.6862E+00

0.1791E+00

0.4599E-01

EOC

—

1.23

1.73

1.89

1.94

1.96

Here, (*, -)^SN dénotes the Eucledian inner product in
u = Püy ü e 2Lh such that

N = Then (5.1) is equivalent to: Find

(5.2)

for all y_ G 2Lh a n d with Xp := (XiVp)- Using an itérative procedure to solve (5.1) requires the évaluation
of ah(vh,Wh) which by (5.2) is equivalent to working on Xh and projecting after each matrix times vector
opération. Note that the projection P is a simple and numerically cheap opération. A similar considération also
holds in the case when the matrix corresponding to Ah is preconditioned by e.g. a multilevel procedure.

Since it is difficult to find a nontrivial explicit solution to (1.1, 1.3-1.4) we consider an example which is not
entirely covered by our error analysis but in which the setting is even more complicated. Let ft := J3i(0) Ç M3

and choose the exterior force ƒ in such a way that the pair (it, p) with

u(x,y,z) =
2xz{x2+y2)

2yz(x2+y2)

p(x;y,z) =

solves (1.1) and (1.3). Instead of (1.4) we have nontrivial tangential stresses. The above solution is similar to
Hill's spherical vortex, see for instance [3].

Note also that in view of the symmetry of £1 u is only unique up to a rigid body rotation. We discretize Q.
by choosing a macro-triangulation and then refine this coarse grid by the bisection method introduced in [1].
The normal n(Gh(p)) is given by n(Gh(p)) — p/\p\- Table 1 shows the resulting errors and expérimental orders
of convergence (EOC) for successive refinements of the macro triangulation. "Level" dénotes the number of
refinement steps. Note that 3 refinement steps of the bisection method yield a triangulation with halved grid
size.

Figure 2 shows the solution for refinement level 4 x 3 .
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F I G U R E 2. Solution on a clipping plane, refinement level 4 x 3 .

The authors want to thank B. Höhn for performing the numerical example.
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