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OPTIMAL ERROR ESTIMATES FOR THE STOKES AND NAVIER-STOKES
EQUATIONS WITH SLIP-BOUNDARY CONDITION

EBERHARD BANSCH! AND KLAUS DECKELNICK 2

Abstract. We consider a finite element discretization by the Taylor-Hood element for the stationary
Stokes and Navier—Stokes equations with slip boundary condition. The slip boundary condition is
enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimates
in the H' and L? norms for the velocity and pressure respectively.
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1. INTRODUCTION

We consider the stationary Navier-Stokes equations: given a bounded domain Q C R¢, d = 2 or d = 3, find
a velocity field u, a pressure p such that

1
Re D + (u-V)u + Vp f in (1.1)
divy = 0 in Q
as well as its linear counterpart, the Stokes equations:
_1 Au +Vp = f in
Re po= (1.2)
divy = 0 in Q
together with the slip boundary condition
u-n=0 on Q. (1.3)

To this boundary condition we have to add a condition on the tangential stresses, for instance
n-o(u,p); =0 ondQ, i=2,...,d (1.4)
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Here, Re denotes the Reynolds number, n,7; the normal and tangential vectors on 952 and

1
0i5 = 0(u,p)i; = %D(u)z’,j — p i

is the stress tensor with

6ui Buj
D = (55 + o)
the deformation tensor.
Boundary conditions (1.3, 1.4) play an important role in many physical situations, in particular for free
boundary problems. We mention:
e coating flows, see for instance [11,16],
e flow in semiconductor melts, see e.g. [10,17].

In contrast to the Stokes and Navier—Stokes equations with Dirichlet boundary condition there seems to be
rather few work concerned with numerical analysis of this problem with slip boundary condition. In [20] Verfirth
proved error estimates for the discretization of (1.1-1.4) by the popular Taylor-Hood element and a polyhedral
approximation 2}, of the domain 2. Verfiirth gave a non optimal error bound of O(hl/ %) in the H! and L? norm
for the velocity and pressure respectively. In [21,22] the same author proposed and analyzed a discretization
where the slip boundary condition is enforced in a weak sense by Lagrange multipliers. Numerically, however,
in most cases it is more convenient to use a discretization, where the slip boundary condition is incorporated in
the ansatz space, see also [2].

The present article therefore analyzes a discretization of this type for the Taylor-Hood element. We improve
the result from [20] to the optimal error bound O(h3/2) for the velocity and the pressure in H' and L? norms
respectively for a polyhedral approximation of Q.

The paper is organized as follows: In Section 2 the finite element formulation and some notations are given.
In particular, we introduce a homeomorphism G which maps the discrete domain Q, onto Q. We prove optimal
error estimates for the Stokes problem in Section 3. The key idea is to transform the discrete solution via G,
onto the original domain 2 and to carry out the error analysis on ). We thereby avoid error terms which
involve integration over the discrete boundary 8Q. In Section 4 optimal error bounds are also obtained for
the nonlinear Navier-Stokes equations in case of small Reynolds numbers. Section 5 concludes the article by
presenting numerical results.

Remark 1.1. After having finished this paper we got to know about a related recent paper by Knobloch [12].
He considers the Stokes equations allowing both slip and no-slip boundary conditions. For a tetrahedral ap-
proximation of  and finite element spaces (including the Taylor—Hood element) satisfying suitable assumptions
he obtains optimal orders of convergence. Our technique however is different from his in that we use the trans-
formation G, in order to carry out the analysis on Q which simplifies the calculations considerably. A further
difference is that we also treat the nonlinear problem and support our analysis by a numerical example.

2. FINITE ELEMENT FORMULATION

In the following we assume for simplicity that € has no axis of symmetry. This will be needed to insure
ellipticity of our problem, see (2.3) below.

In order to derive a variational formulation of (1.2-1.4) the momentum equation in (1.2) is multiplied by a
function v € H(;R3) and integrated by parts:

/Q("‘éAU-FVP)"U = i_lli—e/QD(u):D(v) — /deivv—/ann-a(u,p)v

2_flw/ﬂp(u):p(u) - /deivv - /m(n-d(u,p)n)v‘n,

(2.1)
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where the last equality follows from (1.4). Now it is natural to introduce the following bilinear forms:

a(u,v) = 2—;{5 nD(u) : D(v) for u,v € H' (£ R3)
b(v,q) = - [ gdivw for v e HY(;R3), g€ L3()
Q
as well as the function spaces
X = {veH' QR |v-n=0 onoQ}

M

lae '@ | [ a=0)
Q
The weak formulation of (1.2-1.4) then reads: find (u,p) € X x M such that

a(u,v) + b(v,p)
b(u, q)

(f,v) forallve X

(2.2)
0 forallge M

where (f,v) = [, fvdz denotes the L? inner product. Note that a weak solution which is smooth is also a
solution of (1.2-1.4). Both existence and uniqueness of a weak solution follow from Korn’s inequality, see (3.4)
below

|ivii§11(n) < C’/Q D(v) : D(v) for all v € X, (2.3)

the Babuska—Brezzi condition

b(v,9)

inf wp —2l 5 55 2.4
9eM\{0} vex\{o} llvllallgllz 24)

and the general theory of saddle point problems, cf. [5,9].
Regularity properties of (u,p) were studied for instance in [18], in particular we have

lullfs@y + WPk < Clfltn@) — if Qis of class C*. (2.5)

Next, let us denote by 7}, a finite set of straight, closed d-simplices which triangulates a domain

G= U T

’I—1€7~—h

in such a way that all vertices on 8, also lie on 992. Denote by h(T) = diam(T’) the diameter of T' and by p(T)
the radius of the largest ball inscribed 7. We make the usual assumption of shape regularity, i.e. for a family of
triangulations (7}, ), we assume that
h(T)
sup max —==- < Kk < 0.
h TeTn p(T)
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For every T € Ty, there exists an invertible affine mapping
F7:RY 5 RY Fp(d) = Apd + by,

which maps the standard d-simplex T° onto T'. Besides the triangulation 7;, which will be used to define the
discrete problem and to carry out the practical computations we also introduce an ezact triangulation Ty, of Q.
The existence of such a trlangulatlon together with the associated 1nterpolat10n estlmates is proved in [4,13]. In

essence, for every T' € T, there is a mapping &7 € C3(T;R?) such that Fy := Fj + ®; maps 7" onto a curved
d-simplex T C Q and
a=Jr

TETh

Furthermore, the mapping Gj which is locally defined by
Gh!f’ = Fiz oﬁ’q——,l

(see Fig. 1) is a homeomorphism between Qj, and Q. The construction in [4,13] also implies that &7 = 0 if T

has at most one vertex on 8§, so that G5 = I on all simplices which are disjoint from 8. Finally, we have
the estimates

sup (DG, 7 — I)(2)| < CR(T), |Ghllgs.co(ry <C
z€T

sup | DFz(2)|| < CllAzll, sup||IDF;(2)] < ClIAZ'I (2.6)
zeT zeT

ci|det Aj| < |det DFs(2)| < co|det Aj|, €T
for all T € 7. In particular, v € H'(Q) if and only if vo Gy € H'(Q4) and

csllvllme) < [voGrl g, < callvllm (o)

Let us turn to the definition of the finite element spaces which we shall use. We denote by N}, the union of the
set of all vertices of 7 with the set of all midpoints of edges of d—simplices in 7. Then we define

Xn = {on € COn;RY | v, 7 € Pa(D)%, vi(p) - n(Gh(p)) = 0 Vp € Mo 1 6}

and
My = {gn € C°(0) | 4y 7 € P1(T), | an=0}
(978

that is we use the so called Taylor-Hood element and enforce the slip boundary condition pointwise in all
boundary vertices and midpoints. Note that the normal n appearing in the definition of X}, is the normal to
the domain Q. Defining ap : Xp X Xp = R, by : Xp x M, — R by

1

ah(’l.Lh,'Uh) = ﬁg & D(uh):D(vh)
h
br(vh,qn) = —/_ qn div vy,
Qn
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Gy
A
T
T
Fz
FIGURE 1. T, T and T at the boundary.
the discrete analogy of (2.2) reads: find (un,prn) € X X M), such that
an(un,vn) + bu(vn,pn) = f-un for all vy, € X3,
$n (2.7)
bn(un,qn) = 0 for all g5, € My,

where f := foGh. It follows from [20] that (2.7) has a unique solution for all 0 < h < hg with ko small enough.

Remark 2.1. Since the Babuska-Brezzi condition can be proved for the Taylor-Hood element without using
an inverse estimate, see [15], we do not assume quasi uniformity for the triangulation 7. Thus our analysis is
valid also in the case of adaptively refined meshes.

Remark 2.2. We have introduced f above because we do not want to overburden the error analysis with the

approximation of fn f - vp. This can be done with the help of a suitable quadrature rule under appropriate
regularity assumptions on f (c¢f. [7]: Chap. 4, Sect. 4.1).

3. PROOF OF THE ERROR ESTIMATE

One problem of the error analysis lies in the fact that (u,p) and (up,pn) are defined on different spaces. To
overcome this difficulty we assign to each (vn,qn) € Xp X M}, the pair
. _ 1 _
(O, @n) = (vh 0 Gyl qno Gyt — @—I/ an OGhl) € HY(O;R?Y) x M.
B Ja

Note that in general ¥, ¢ X since vp, - (n © G},) only vanishes in the points of N}. Inserting o, into (2.1) we get

a(u,p) + b(Th,p) = / f-on +/ (no(u,p)n) oy, - n, vp, € Xp,.
Q a0
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Combining this identity with (2.7) we obtain the following error relation for (u — @n,p — Pr):

a(u — Un, Tn) + b(Oh,» — Br) = an(un,vn) — a(@n, 0s) + bp(vh, pr) — b(Th, Dr)
+/Qf-1_)h—/ﬁhf‘vh+/69(na(u,p)n)'Dh~n (3.1)
b(u — Un,Gn) = br(un,qn)— b(@n,qn)

for all vy, € Xy, qn € Mjy,.

Before we can apply well-known results on the approximation of saddle point problems we need suitable
discrete analogies of the ellipticity condition and the Babugka—Brezzi condition.

The following lemma will be very helpful in the subsequent analysis.

Lemma 3.1. There exists ha > 0 such that for all0 < h < hy and all vy, € Xp
5n - nllL2a0y < ch? |on ]| ().

Proof. Let us denote by T;2 the set of all simplices in 75, which have a (d — 1)-face on 8Q. The transformation
rule and (2.6) imply

/ T, -n|? = Z/ l(vhoGRY) - m? <ec Z/ lup, - (n o G)|?.
a0 aanT

TeT? Terp  OmNT

Let us fix T € 7;2 and put T' := 80, NT. In view of the definition of X}, we have Loy - (noGr)p) =0
where I7 denotes the Lagrange interpolation operat "
interpolation result (cf. [7]) we get

o £ Al ~nial £
t for polynomials of degree two. If we apply a well-known

/ﬁm-(noGh)F - /f'lvh-(nocw—fﬁ(vh'(noah))P
ch(T)° /F D% ((on - (.0 Gu) ) 2

IA

Observing that v,z € P, (T') as well as 89 € C* and using (2.6) we may estimate

[10%@n (oGP < cllonlBaey = elonlZagey + Dol )
< Ch(T)_lnvh“sz(f) + Ch(T)‘2llvh”ip(f\)
< Ch(T) 1thHL2(T +Ch(T)‘3“vhHip(f)
<

Ch( ) SHUhHHl(j?)

in view of the inverse estimates

vl 2y < Ch(T)_%”U’L”L%T’)’ DRl Loy < h(T) M onll pagry-
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In conclusion

/ [on - n® < e 3 BEPlonlZ gy < b® D 1onln ) < b9l g
o TETP TeT?

and the lemma is proved. O

Note that we made use of the inverse estimate only locally, hence we do not need a quasiuniformity assumption
on the triangulation.

The above result should be compared to Lemma 3.1 in [20] where the author obtained the boundary estimate
“'Uh . nhlle(th) < Ch% “'Uh“Hl(Qh)» vp € Xp

which then led to the suboptimal error bound O(h%). By employing the transformation G} we are able to
improve this estimate and this will turn out to be crucial in the proof of the optimal convergence rate.
The next lemma estimates the effect of the transformation on the bilinear forms.

Lemma 3.2. There exists hg > 0 such that for all 0 < h < hy and for all vh, wp, € Xh, qgn € My,

(@) la(@n, on) — an(onwn)l < ch( Y Vi) (X Ionline)

TNONAD TNONFAD

o , 3 o _ 3 _ 3
() 1b(®h, @) —br(ve,an)l < chZ||Onllme)llnllzz@) + Ch( > th“%-Il(T)) ( > H%Hiz(T)) :
: TRoQAD TNOQ#D

Proof. Note first that G, = I on all simplices which are disjoint from 9,. Then the first assertion can be
proved in the same way as Lemma 8(ii) in [13].
In order to show (b) we first estimate [, g © G, . Observing that fﬁh gr, = 0 we get

/thG’—Zl = Z /QhOG’:1+ Z /qhoG;I
Q T T

TNONAD TNoN=0

> /T%OG,11+ >

TNONAD Tnon=0"T

. (th |detGh|—/th)

TNOQ£D

in view of the transformation rule. From (2.6) and Hoélder’s inequality we obtain

| /Q 2oC < ¢ 3 ) /T i <e S RD gl

TNON#D TNONAD
1
= 2 | 3 —1
< o 3 a0 lanllzaa,) < chllan o 67 M)
TNOQHD
<

ch? @kl L2y + Ch%i/ gn o Gy
Q
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1
since gr, 0 Gy ' = Gn + I—Q—l/ gn o G,’;l and
Q

> @) < cHE () < cHATH(09) (3.2)
TNoNH#D

with H?! the (d — 1)-dimensional Hausdorff measure. Summarizing the above considerations we get for suffi-
ciently small ho

I/QQh o Gt < ch?||gnll L2y (3.3)
and therefore
16(Oh, @n) = br(vh, qn)| < [6(h, qn 0 Gy ") — br(vh, qn)| + cllBnll ) |/ gn o Gyt
Q

Estimating the first term again similarly as in Lemma 8(i) in [13] the result follows from (3.3). a

Next we obtain discrete versions of the conditions (2.3, 2.4).

Lemma 3.3. There exists hz > 0 such that for all 0 < h < hg

(a) a(h, Tn) = collTnllipny,  vh € X

inf sup — b, q_h) >p">0.
an€M\{0} v, e x,\{0} TRl ()|l L2(0)

()
Proof. (a) Korn’s second inequality (cf. [14]) together with the Poincaré-Morrey inequality (cf. {21]) implies
s oy < e / D(v) : D) + [oll3a) ) < e / D(v) : D(v) + / v nf2) (34)
Q Q a0
for all v € H'(Q;R%). Applying this estimate to ¥, and using Lemma 3.1 we arrive at

18R )131 () < € @(Bh, Bn) + cB® || B ll7n (g
which gives (a).
(b) According to [20] the following condition is valid:

. b (v, qn)
inf sup
an€MR\{0} 4, e X, \ {0} l|vn ||H1 ) ||Qh||z,2(()h)

>pB>0.

The assertion now follows from Lemma 3.2b if we observe that ||Ox[ g1 (0), lvrll g1(g,) and Nanllz2(0), llgnll L2 can)
are equivalent norms for vy, g respectively. 0

Now we are in position to prove the main result of this paper.

Theorem 3.4. Let (u,p) be the solution of (1.2-1.4) and (un,pr) the solution of (2.2). Then there exists hy > 0
such that for all 0 < h < hy

llu — @l mgey + Ip — Brll ey < ch¥ | fllme)-
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Proof. As we do not have {on, | v € X} C X we consider both spaces as subspaces of H!(Q,R%). From
Lemma 3.3 we infer

a(ﬁh,ﬁh) > COHT)hH%(l(Q), for all v, € X3,
(T (3.5)
sup M > B @nlirey,  for all g € M,
wneXxn\{0} 1TnllE1(e)
Using the techniques in Section II.2 in [5] we conclude from the error relation (3.1, 3.5)
5
llw—@nll g (o) + llp = Prlize) < c<vhi£§(h i = Ball ) + qhi&&h 1P — @rllr2(e) + ; Mz’,h) (3.6)

where

|an (un, vn) — a(Gn, Un)|

Myp = sup —
vR€Xn\{0} HUhHHI(Q)
— b 7 .
Man =  sup [bn (vr> Pn) — b(Bn, 1)|
wn€Xp\{0} Rl 22 ()
T =[5 fv
My = sup |fnf _h fnh h|
© wReXn\{0} 1on ) mr )
Myyp = sup | fag(no_(u,p)n) O - |
v €Xn\{0} ||Uh||H1(9)
— b 37 ~
Msp = sup [on(un@n) = b, Gn)|,
grn€Mp\{0} ||Qh[|L2(Q)

In the following we estimate the various terms occurring on the right hand side of (3.6).

To begin, let us denote by I? the usual Lagrange interpolation operator on {2, for polynomials of degree two
and define wy, := I2(u o Gp,). Clearly, w, € Xj and

luo Gh = whll a7y < WD (wo Gr)ll 2y, T € T

Transforming to Q and using (2.5, 2.6) we get

v = onllgr @) = ( Z flu— wh“%{l(T)) F < C( Z fuoGp — wh”ip(f)) ’
T€Th TE _h
< k(X ID*wo Gillairy)” < ch¥llulms)

T-”E'fh
< ch?||fllavay

Arguing similarly for the pressure we arrive at

inf -7 1 inf — < ch? 1O}
o2 lu=Bllm@ + inf [p=dullze) < k[ fllm@
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Next, Lemma 3.2 gives

[(MC

M < oh( X Nanlinen)
TNONHAD

1

— 2

< chllu=anllme +eh( Y lulnn)

TNOONH#D

1
< ch”u—'EhHHl(Q)+c||u||cx(g)h( 3 h(T)a)z

TNONAD

< chllu —anllm ) + ch? | fllaa
where we used the continuous embedding H3(2) <+ C1(Q), (3.2) and (2.5). Similarly
Man < chllp — PrllL2) + Ch%”fliHl(Q)'

From the definition of f and the fact that G, = I on all simplices which are disjoint from 8y, we infer

I/Qf'ﬁh— ﬁhf.vhl

B / (f G) - v(|detDGA| — 1) |
TN, #0

< c¢h z If o Grll L2y llvnll L2y
TNo, #£0

< chl|fllz2(B.n0)n0) 19rllL2(B, L (20)N0)-
In view of the embedding H () — L*(Q) we obtain
i 1
Il L2B,nmn0) < (LB (02) N ) * (| flls) < che | flla(e)

where £¢ denotes the d-dimensional Lebesgue measure.
Using the same argument for o), we arrive at

[ o= [ Fonl < bl ol o)
Ja &
for all v;, € X}, which implies
Msn < Ch%“f”Hl(Q)-
Employing Lemma 3.1 we get
| _otwmm) onenl < clullesm + Ipllooy) I mlzsom

3 _
< k|| fllar @) llonll e @)

and therefore

My < ch¥ ||| mica-



NAVIER-STOKES EQUATIONS WITH SLIP-BOUNDARY CONDITION 933
Finally, it follows in the same way as above
_ 3
Ms,n < chllu — tn| gy + ch? || fllar(a)-
Combining the above estimates and choosing h4 small enough the result follows. O

4. ERROR ESTIMATES FOR THE NONLINEAR PROBLEM

In this section we extend our error analysis to the Navier—Stokes problem (1.1, 1.3, 1.4). The discrete problem
now reads: find (up,prn) € Xp X M}, such that

an(un, vn) + ba(vh, pr) + Ni(up, un,vp) = foon  forall vy, € Xy,
&, (4.1)
0 for all g, € My,

It

br(un, qr)

Here, X}, M}, ap and by, are the same as in Section 2 while IV}, is defined by

Np(u,v,w) := %./ﬁ (((u V)v)w — ((u-V)w)v), u,v,w € HY(Qp; RY).

It is well-known that (1.1, 1.3, 1.4) has a unique solution (u,p) € H3(Q;R?) x H%(Q) provided
(Re)?[|fll L2(y < &(8) (4.2)

with some constant ¢(2) > 0 depending on the domain .
Furthermore,

lull 1@y < cRell fllz2y- (4.3)

In what follows we assume that (4.2) holds. We shall use a quantified version of Newton’s method in order to
derive an error bound for the velocity.

Theorem 4.1. Let X,Y be Banach spaces, ug € X, R > 0 and F € C*(Bg(uo),Y). Assume that DF (ug) is
an isomorphism of X onto Y with || DF(uo)™||rv,x) <7, that | DF(uo) ' F(uo)|x < € and that

|DF(u) — DF®)llcxyy < Kllu—vllx  for all u,v € Br(uo).
If
2¢ <R, 2Key<1 (4.4)

then the problem F(u) = 0 has a unique solution u* € Bae(ug).

Proof. See Theorem 15.6 of [8].

Let us now apply the above result to our situation. We set X = Y = H1(Q;R?). Let T, € L(X}, X») be the

discrete Stokes operator which assigns to every gn € X, the velocity up € H* (Qh,Rd) of the unique solution
(un,pr) € Xn X My, of

ah(uh,vh) + bh(’uh,ph) = <gh,’l)h> for all vy, € X3,
bn(up,qn) = 0 for all g5, € My,



934 E. BANSCH AND K. DECKELNICK

Here, {.,.) denotes the duality between X and Xj. We define the mapping Fj, : H'(Q,R%) — HY(Q,R%) as
follows: for a given v € H*(2,R%) let

wp, = Th(foGh —Nh(voGh,voGh,-))

and set

Fp() ==v—wpoGy' = v — .
Clearly, uy, is a solution of (4.1) if and only if Fj(@p) = 0.
Now we are in position to formulate the main result of this section.

Theorem 4.2. Let (u,p) be the solution of (1.1, 1.8, 1.4). If Re|lf|lr2(q) is sufficiently small, there exists
hs > 0 such that for all 0 < h < hs (4.1) has a unique solution (un,pn) which satisfies

lu — Gnllgr) + llp — Prllzz2() < ch?.

Proof. Clearly Fy, € C*(B;(u); H*(;R?)) and DFp(u) = I — Sy with S, € L(H!(Q;R?)). From the uniform
ellipticity of aj, (which follows from Lemma 3.2 and Lemma 3.3), the uniform continuity of Nj, on H*(Q;R9)3
and (4.3) we conclude that ||Shl|,(a1(q)) < 1/2 provided Rel| f|| 12y is small enough. Therefore, DFy,(u) is an
isomorphism of H*(£;R¢) and

IDFy(u) L)) <7 uniformly in h. (4.5)

Next, we want to estimate €5, := || Fy(u)| g:. According to the definition of Fj, we may write Fj(u) = u — s
where wy, € X}, is the solution of the following problem:

an(Wh,vr) + bn(vy,pr) = /_ foGh-vp — Np(uo Gr,uo Gp,vp) forall vy, € X,
Jo,
br(wn,qn) = 0 for all g, € Mp,.

Since (u,p) is a solution of (1.1, 1.3, 1.4) we also have

a(u,v) + b(v,p) = /f-v——/(u'V)uw forallve X
Q Q
b(w,q) = 0 for all g € M.

Just as in the proof for the linear case we may now deduce an error relation for u — wp:
a(u — Wh,Tp) + 0(Uh,p — Dr) = ar(Wh,vn) — a(Wh, Tp) + bp(vh, Pr) — b(Vn, Br)

+/ fon— [ f'oGh-vh+/ (no(u,p)n) O - n

Q Qn o0

~-/(u~V)u-1‘)h+Nh(quh,quh,vh) (4.6)
Q

b(u— Wn,dn) = br(wh,qn) — b(Wh, Gn)
for all v, € X}, qn € M.
From Lemma 4.3 below for the case w = u o G, we infer
sup | fo(u- V)u - B — Np(uo Gh,uo Gh,up)]

— < ch%.
vh€Xn\{0} Rl 1 ()
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Combining this estimate with the argument in Theorem 3.4 we arrive at
en = | Fn(u)l g () = llv — @nllm o) < ch?
which together with (4.5) implies
| DFw() Fa (@)l () < MEa@)lm <chd. (47)
Furthermore, it is not hard to prove that
| DFn(v) — DFp(w)ll L)) < Kllv —wllgiqy for all v,w € By (u). (4.8)

From (4.5, 4.7, 4.8) we see that (4.4) is satisfied provided 0 < h < hs and Theorem 4.1 implies that the equation
Fr(v) = 0 has a unique solution @y, € B, s (u) or in other words

l[w — Gnll (o) < ch?. (4.9)

Furthermore, up, = @y, o Gj, solves (4.1).
Before we give a corresponding bound for the pressure we prove a lemma which deals with the nonlinearity
and which has already been used above.

Lemma 4.3. Let (u,p) € H3(Q,R%) x H2(Q) be the solution of (1.1, 1.8, 1.4) and w € H (Qx,R%). Then

| fﬂ(u : V)’U. < Up — N},,(’U.), w, vh)l
sup =
un€Xn\{0} 1On || 2

< cllu— wo Gyl (fullan + llwo Gy | ) + cht.

Proof. Using integration by parts together with (1.3) we get

/Q(u-V)u.f;h:%L(u-V)u-ﬁh._%/ﬂ(u.vmm

so that

/(u V)u - O, — Np(w,w,vy) :% /(u V- vh—/_ (w- V)w - vh)

- /(u V)0, - u—/ (w-V)op, - w)

The transformation rule and (3.2) imply
}/(u~V)u-'F)h—/ (w-Vw-v] = l/ (wo Gp - V)uo Gy, - vp|detGp| —/ (w- V)w - vp|
Q Qh flh Qh
< l[ ((UOGh 'V)’U,OGh'vh - (wV)wvh)i
Qp

te Y k() / [on]

TNOQ#D
< clluo Gr — wilg (Jluo Grllms + llwllm)lvallen
2
e Y BT onllaer
TNoN#D

< cllu—wo Gl (lullm + lwo G5 M m ) Inllm + ch? [T a-
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Here we also employed the continuity of the trilinear form (u,v,w) — ffl; (u-V)v-won (H (Q, Rd))s. The
second term can be treated in the same way and the lemma follows. a
In order to obtain the pressure bound we now write down an error relation analogous to (4.6) with u — @y

replaced by u — s and Np(u o Gh,u o Gh,v) replaced by Np(un, un,vs). Observing that ||usll g < cRe| f]| 2
Lemma 4.3 implies

-V - Tp — N vy s Uh
sup | Jo(u - V)u -y h(Uh, Un, VR)|

— Scu~1’ihl 1(Q +Chg'
vnE€XA\{0} 1Tkl &1 (02 | im@

so that the argument in Theorem 3.4 gives
3
lp — Prllr2(n) < ch?.
This concludes the proof of Theorem 4.2. O

5. NUMERICAL RESULTS
From a numerical point of view it is quite simple to treat the boundary condition incorporated in X, see
also [2]. If one uses iterative methods to solve problem (2.7) or (4.1) (for example iterative solvers based on the
Schur complement, see e.g. [2,6,19]), then the core method consists of solving the elliptic problem
ah(uh,vh) = (X, ’Uh> for all Vp € X (5.1)
with some right hand side x. Now consider

X = {on € C°u;RY) v, 7 € Pa(T)* )

the space of all piecewise quadratics (without enforced boundary condition). With v, € X5, we associate its
representation by a vector of nodal values v = {vp}, = {v,v2,v5}, C X, such that

— _ 1,2 ,3\T
Vh = E : UpPp = § : (v vp:v5) " #p

peNh. PENh
with {¢p}p the nodal basis of X, i.e.

op(q) = 6pq  for all g € Np,.

Accordingly define
X, ={veX,|vy-n,=0Yp€N,NO }

where n, = n(Gx(p)). Define the projection P : X, — X, by

—vp - if p € N N 00
(Py),,:{ Up—Up Npnp ifp h h
Up else

and the operator Ay, : Xh —> Xh by

ah(vh, wh) = (Ahg, Q)R.%N for all vy, wp, € Xh.



NAVIER-STOKES EQUATIONS WITH SLIP-BOUNDARY CONDITION 937

TABLE 1. Numerical results for 5 x 3 bisection steps.

level | { tetrahedra | § nodes | [lun — ullgr | EOC | |lpn —pllz | EOC
0 6 27 | 0.6985E+01 — | 0.1976E+02 —

3 48 125 | 0.4607E+01 | 0.60 | 0.8430E+01 | 1.23

6 384 729 | 0.1566E+01 | 1.56 | 0.2543E+01 | 1.73

9 3072 4913 | 0.4530E+00 | 1.79 | 0.6862E+00 | 1.89

12 24576 | 35937 | 0.1224E+400 | 1.89 | 0.1791E+400 | 1.94
15 196608 | 274625 | 0.3301E—01 | 1.89 | 0.4599E—01 | 1.96

Here, (-,-)st~ denotes the Eucledian inner product in R3Y, N = dimX},. Then (5.1) is equivalent to: Find
u = P, & € X, such that

(AhP@, PQ)R:;N = (PTAhP@, Q)RSN = (PAhP@, _'Q)]RSN = (PK, Q)RsN (5.2)

for all ¥ € X, and with Xp = (X, ¥p). Using an iterative procedure to solve (5.1) requires the evaluation
of ap(vn,wp) which by (5.2) is equivalent to working on X, and projecting after each matrix times vector
operation. Note that the projection P is a simple and numerically cheap operation. A similar consideration also
holds in the case when the matrix corresponding to Ay is preconditioned by e.g. a multilevel procedure.

Since it is difficult to find a nontrivial explicit solution to (1.1, 1.3-1.4) we consider an example which is not
entirely covered by our error analysis but in which the setting is even more complicated. Let 2 := B;(0) C R3
and choose the exterior force f in such a way that the pair (u,p) with

2z2(2% + y?)
u(z,y,2) = 2yz(2® +y?) )
42 +°)(1 - §(2? +97) - 2%)

p(z,y,2) = lﬁ(z—z—)

solves (1.1) and (1.3). Instead of (1.4) we have nontrivial tangential stresses. The above solution is similar to
Hill’s spherical vortez, see for instance [3].

Note also that in view of the symmetry of © u is only unique up to a rigid body rotation. We discretize
by choosing a macro-triangulation and then refine this coarse grid by the bisection method introduced in [1].
The normal n(G(p)) is given by n(Ghr(p)) = p/Ip|. Table 1 shows the resulting errors and experimental orders
of convergence (EOC) for successive refinements of the macro triangulation. “Level” denotes the number of
refinement steps. Note that 3 refinement steps of the bisection method yield a triangulation with halved grid
size.

Figure 2 shows the solution for refinement level 4 x 3.
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FIGURE 2. Solution on a clipping plane, refinement level 4 x 3.

The authors want to thank B. Héhn for performing the numerical example.
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