@article{M2AN_1999__33_6_1091_0, author = {Bernard, Jean-Marie}, title = {Weak and classical solutions of equations of motion for third grade fluids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1091--1120}, publisher = {EDP-Sciences}, volume = {33}, number = {6}, year = {1999}, mrnumber = {1736891}, zbl = {0990.76003}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_6_1091_0/} }
TY - JOUR AU - Bernard, Jean-Marie TI - Weak and classical solutions of equations of motion for third grade fluids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1091 EP - 1120 VL - 33 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_6_1091_0/ LA - en ID - M2AN_1999__33_6_1091_0 ER -
%0 Journal Article %A Bernard, Jean-Marie %T Weak and classical solutions of equations of motion for third grade fluids %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1091-1120 %V 33 %N 6 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_6_1091_0/ %G en %F M2AN_1999__33_6_1091_0
Bernard, Jean-Marie. Weak and classical solutions of equations of motion for third grade fluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 6, pp. 1091-1120. http://archive.numdam.org/item/M2AN_1999__33_6_1091_0/
[1] Etude Globale des Fluides de Troisième Grade. Thèse de 3e cycle,Université Pierre et Marie Curie, France (1986).
,[2] Vector potentials in Three-Dimensional Nonsmooth Domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR | Zbl
, , and ,[3] On a class of fluids of grade 3. Internat. J. Non-linear Mech. 32 (1997) 73-88. | MR | Zbl
and ,[4] On the Existence of Strong Solutions for Non-Stationary Third-Grade Fluids Preprint, Université Blaise Pascal, Clermont-Ferrand (1996).
and ,[5] Weak and classical solutions of a family of second grade fluids. Internat J. Non-linear Mech. 32 (1997) 317-335. | MR | Zbl
and ,[6] Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Sér. I 298 (1984) 285-287. | MR | Zbl
and ,[7] Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar, Pitman, 109 (1984) 178-197. | MR | Zbl
and ,[8] Theory of Ordinary Differential Equations. Mc Graw-Hill, New York (1955). | MR | Zbl
and ,[9] Thermodynamics and stability of fluids of third grade. Proc. Roy. Soc. London Ser. A 339(1980) 351-377. | MR | Zbl
and ,[10] Existence and uniqueness of classical solutions of the equations of motion for second grade fluids. Arch. Rational Mech. Anal. VIA (1993) 221-237. | MR | Zbl
, and ,[11] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
,[12] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR | Zbl
,[13] The Nonlinear Field Theory of Mechanics Handbuch of Physik, Vol. III. Springer-Verlag, Berlin(1975). | Zbl
and ,[14] Global existence of classical solutions for the equations of third grade fluids. J. Math. Phys. Sci.29 (1995) 47-69. | MR | Zbl
and ,[15] Navier-Stokes Equations. North-Holland, Amsterdam (1977). | Zbl
,[16] Mathematical analysis of viscoelastic non-Newtonzan fluids Thesis, University of Lisbonne (1997).
,