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A SINGULAR PERTURBATION PROBLEM IN A SYSTEM OF NONLINEAR
SCHRÖDINGER EQUATION OCCURRING IN LANGMUIR TURBULENCE

CÉDRIC G A L U S I N S K I 1

Abstract. The aim of this work is to establish, from a mathematical point of view, the limit a —> +00
in the System

idtE + V(V.£) - a2V x V x E = -\E\2aE,
where E : R3 —> C3. This corresponds to an approximation which is made in the context of Langmuir
turbulence in plasma Physics. The L2-subcritical a (that is a < 2/3) and the H 1-subcritical a (that
is a < 2) are studied. In the physical case a = 1, the limit is then studied for the iï1(R3) norm.

Mat hématies Subject Classification. 35B05, 35B25, 35L60.

Received: November 12, 1998. Revised: July 23, 1999.

1. SETTING OF THE PROBLEM AND MAIN RESULTS

We are interested in the first Schrödinger system that describes the coupled motion of intermingled électrons
and ion fluids that compose the plasma without any magnetic field. The system satisfied by the electric field
envelope E is

-2iupedtË - 34eV(V.Ë) + c2V x V x Ë + ujpe
2 —Ë = 0, (1.1)

where ojpe is the électron plasma frequency, v^e the average thermal velocity of the électrons, c the velocity of
light, no the mean density of électrons and ône is the low frequency variation of électron density. A justification
for the time-envelope approximation can be found in [1].

Writing ~ in terms of E in (1.1), we obtain

- f V x V x Ë+ -p^\Ë\*Ë = 0, (1.2)
2 ÖTlKL

where £0 is the dielectric permittivity of free space, ks the Boltzmann's constant, and ksTe is the électron
thermal energy.
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2

The term ^ V x V x E is usually neglected in physics, the équation (1.2) becomes (see [3], p. 138),

WË = 0. (1.3)

Equations that have the gênerai form of (1.3) widely occur in physics and are generically known as the nonlinear
Schrödinger équation. The reader can refer to [3] for more details on the physical problem.

The goal of this paper is to verify, from a mathematical point of view, if the term y V x V x f î can be simply
neglected in (1.2) or not. Since v\e <C c2, the following model is considered

iEt + V V . £ - a 2 V x V x E = e\E\2aE,
(1.4)

E\t=Q = # 0 Ï

with a > 1 and we investigate the case a —> oo.
The parameter e takes the value 1 or — 1. The complex variable E dépends o n t e l and x G R3.
Rather than studying this problem for x E R3, we generalize this work to the case x E R^ for TV > 2. We

then replace (1.4) by

. £ a + a2(A - VV.)Ea = e\Ea\
2crEa in &(RN),

(1.5J
E E

The following splitting will be useful in the sequel,

iEh + AS,, = eV\\ (|E|, + E^iEw + B±)) in

a;2 A £ j = £Px (!^|| + E±\2t7(E\\ + £?±)) in

where V± dénotes the Hodge projection from L2(RN) to the subspace of divergence free vector fields, V\\ =
I - V±, £|| = P\\Ea and E± - V±Ea.

The results about existence and uniqueness of a solution for (1.5) are similar to the ones concerning nonlinear
Schrödinger équations [2,4,5]. The first step is the study of the linear problem in order to obtain uniform (with
respect to a) estimâtes on E\\ and E±, defined in (1.6), (1.7). The term E± being small in some sensé for large
value of a, the limit of the solution of (1.5) can be evaluated.

The limit obtained her e reads:

iEt + AE = eV\l(\E\2*E)

and E = V\\E. Remark that here, AE = VV..E.
Remark also that the équation (1.8) is quite different of (1.3) which corresponds to

In what follows, we establish the convergence of solutions of (1.5) to the ones of (1.8) for adequate norms.
Let us recall from [2] some results on (1.8).
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Theorem 1.1. Let EQ € L2(RN) and a < ̂ ; there exists an unique solution E G C(R+; L2(RAr))nLfoc([Oî +oo[;
L2*+2{RN)) t0 (L8)f where 1 = N__K_.

Let Eo G ff^E^) and a < j ^ ; there exist T* > 0 and a unique maximal solution E e C(R+;H1(RN)).
There exist some initial data Eo € H1(RN) (when e = — 1 and a > j$) for which T* is finite.

The main results consist of the next Theorems whose proofs are developed in Section 4.

Theorem 1.2. Assume a < -j^. Let Eo € L2(RN), there exists a unique global solution Ea G C(M+; L2(RN)) n

f= f - ^ ) to (1.5).
Moreover,

strongly ( | = y "

-* E in L°°([O,T[;L2(RJV)) VT < +00,

where E is the solution to (1.8) introduced in Theorem 1.1.

Theorem 1.3. Assume a < 77̂ 2* Let Eo £ H1(RN). Then there exist Ta > 0 and a unique maximal solution
Ea e C([0,Ta[;H1(RN)) to (1.5). Moreover liminf Ta > T* where T* is the existence time of the solution E

ex.—»-}-oo

to (1.8) introduced in theorem 1.1 (if e = 1 or if e = — 1 and a < JJ then Ta = T* = +00). IfP±Eo —> 0 in
H1^1*) when a goes to infinity, then,

M /2 N N \

Ba(t) -+Ein C([0,r[;i71(R7V)) VT < T*.

Remark on notation. Throughout this article, the sarae letter C (or sometimes c) shall dénote constants
which may change from line to line.

The classical space LP(RN) is sometimes noted LP for conciseness. Some notations will be introduced in the
Preliminaries.

2. P R E L I M I N A R I E S

2.1. The linear group

In this section, we study the following linear groups, S|| (t) associâted to

iE\\ + VV.J5|| = 0

F F GL2(WN) {2A)

and 5_L (i) associated to

iE±t + a2(A - VV. )^ ! = 0
L2 N (2.2)

Simple computations with Fourier transform lead to
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where M and L dénote the following matrices (in the three dimensional case),

1 / £l 6 6 6 6 \ 1 / ^2+^3 ~66
M = (7 i2 6 6 2̂ 6 6 L=T7^ - 6 6 Cl +^3 " 6 6 | = / - M .

|Ç| \ 66 66 Û ) m \ -66 -66 g+ïl

Remark 1. For E e L2(RN) satisfying V.E = 0 then ME = 0 and LE = Ê. That is

So, we have

We then remark that the group Sy (i) is associated to

iEllt + AE\\ = 0

It then follows

Prom these last expressions and as the S\\(t) and S±(i) are unitary groups on Z2(RN), we have

C
oÇ^Ny < „ |Eo

and c

By interpolation, we get for p > 2,

C
<

(47TC )

and 5x (t) is associated to

iE±t + a2 A E± = 0
(2.4)

-C^±|t=0 — ̂ OJL t i> (̂ K ) .

We return to the expression of S\\(t) and S±(t) in the Fourier space. It is well known that

(2.5)
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and

c
.i J^OXILP'QR^I (2'6)

J

( R )

(4?r art

with - + A = 1- This last estimate is fundamental since the right-hand side goes to zero when a goes to infinity

(P > 2)-
2.2. Estimâtes with a right-hand side

Using the same splitting as the one used for (1.5), the solution of

Œt + VV.E + a2(A - VV.)£ = ƒ,

£|t=o — ^th

where ƒ dépends ont G l and x e l 3 , can be splitted in two équations,

a2 A Sx = ePj. ƒ in 2?'(RW),

L2(Rff)

We then have,

E±(t) = S

The following resuit will be often used in the sequel:
Lemma 2.1. (see for example [6], p. 109). The operators V\\, V± are continuous on LP(WN) for all
1 < p < oo.

We also introducé the

Lemma 2.2. (see [6], p. 119). We dénote

for 0 < a < d and 1 <p < q < oo, where - = - — §• Then, there exists a constant Ap^q such that,

Proposition 2.1. Let (g,r) £wo reaZ numbers such that,

1 27V 2 _ AT n
2 " r < i V - 2 ' q~^~r

and let (q\rf) be the conjugate exponents of (q,r).
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then

f S,,(t - s)Vl{ (f(s))ds G C([0, T], L 2 ^ ) ) n L*([0, T[; Lr(R*)

and
f*

ƒ ^_Lv^ — ^y ' X \ J \S ) )QS ^ ^ VL̂ ï -̂  J5 ̂  \^ )) ' ' •" vl^) -̂  l) -^ v ^ j j '

Furthermore, there exists a real constant C depending only on q and r such that,

«'([O.TIÏL*-'

<Ca-N^){f\L,

Atlast, ifE0eL2(RN), then

and

Proof. According to (2.5), one has

<C

smce - — y - —
In the same way, from (2.6), we have

S±(t - s)V±(f(s))ds

(2.10)

(2.11)

It follows from Lemma 2.2 the fîrst estimate of the proposition 2.1, (with d = 1, | — 1 — a then ~ — y — a,

We now compute

-f!
AT) J O J O

where the brackets {.,.) dénotes the classical inner product on L2(RN). We can show as previously that

/ S\\(s ~ 5 /)
*/o
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then,

To show the estimate

we proceed by duality,

/ S|,(* - s)V]{(f(s))ds < C\f\2
Lqf[/N

\Jo L2(RN)

ƒ
Jo

L2{UN)

T

O JO

< c\f\]

Then,

f
Jo

<

<

f
Jo

We then have proved,

Due to the similarities between (2.11) and (2.10), the same estimâtes for the group S±(i) can be obtained by
replacing C with Ca~N(l~~r), In the same way, V\\ is replaced with V±.

We then have proved the estimâtes involving S±(t) of Proposition 2.1. D

3. THE CAUCHY PROBLEM

Let us recall the problem under studies,

iEt + VV.E + a2(A - 2
in

(3.1)

This System is splitted as follows,

E±)) in V'(WLN),
(3-2)

and

sV± (|Ê|| + E±\2<r(E\\ + E±)) in ©'(

Êt2(RN).
(3.3)
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3.1. Global existence in L2(RN)

Theorem 3.1. Assume that & < jq and Eo G L2(RN); then there exists a unique solution E of (3 A) in
C(R+;L2(KJV))nLfoc(E+;L2-+2(RJV)), where § = f - ^

Also, E dépends continuously on E$ in the sense: if EQ —» EQ in L2(RN) then En, the solution of (3.1) with
the initial data EQ converge to E in

At last, E vérifies

^ ^ l ^ l y (3.4)

Proof. We first establish the local existence of a solution by a fixed point theorem.
Let us introducé the space

= Loo([0,T[;L2(RiV))nL9([0,T[;L2<T+2(RiV)).

We note T the application
X(T) x X(T) -• X(T) x

: ( ^ ^ ) ( T ( £ ; £ ; )
where

- ie f

/ S±(T - s)(V±(\E{l + E^iE^ + E±)))ds.
o

It follows from Proposition 2.1 that

and

|T2(£| | ,Bj_)|x ( r )< (1 + Ca -^ ) |E O ± | L 2 ( R ^ )

+Ca"^+i ||£;|| -h£jJ2CT(#|| +^±)IL^([O)T[;L(2^+2)'(M^))-

Adding these two last inequalities for a > 1 for example, we have,

Remark that (2a + 2)y = (2a + 2) ̂ -p j , then,

As a < jj, after straightforward computations, we can verify that
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Then, there exists 9 > 0 such that, by virtue of Hölder inequality

\E\\ + ^ X | L 9 / ( 2 ) ^ T

Returning to (3.6), we obtain

117

(3.7)

Lemma 3.1. IfT is small enough, then T opérâtes from the bail 13(0,11) of X(T) x X{T) into itself as soon
as

Proof With R introduced in Lemma 3.1, inequality (3.7) becomes

\T(EhE±)\x(T)xX(T) < ^ + 2CT

So, for T small enough, the Lemma 3.1 is proved.

Lemma 3.2. If T is small enough, then T is a contraction on BR.

Proof. Let (E\\VE±1) and (E\\2,E±2) belonging to X{T) x X(T),

As,

we have,

G

From Hölder inequality, we obtain,

u\2au - \v\2av\ < (2a + 1 ) ( M 2 C T + \v\2a)\u - v

\E±1 -

< C Il-Ell

7 = ^
Then, as a < ^, we can verify that

Then, there exists 6 > 0 such that

2 and we take <?i = ^ .

q'q
- 2aqf

This last estimate with T small enough ensures the Lemma 3.2.

D

(3.8)

•
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The existence of a solution in X{T) follows from the Banach fixed point theorem. Furthermore T dépends
only on I ^ O I L 2 ^ ) (°~ fixed).

In fact T = +00 because the L2(MiV)-norm of E(t) = E\\(t) -f E±(t) is constant for all t. This is obtained,
formally, by inner product of (3.1) with Et-

At this step, we know that T2{E\\^E±) = £ 1 , then the estimâtes (3.5) shows (3.4). This ends the proof of
Theorem 3.1. D

3.2. Local or global existence in

This section is devoted to the existence of solution for (3.1) in

Theorem 3.2. Assume that a < j^z2 and Eo £ H1^/^); then there exist Ta > 0 and a unique maximal
solution of (SA) in C([0,ra[; JÏ^R*)) n i?oc([0,Ta[; W^2a+2(WiN)), where f = f - ^T2- Furthermore, if

lim \E(t)\Hi{1SiN) = +00.
oo? then

Also, E dépends continuously on EQ in the sensé: if EQ —> EQ in Hl(WLN) then En, the solution of (3.1) with
the initial data E$ converge to E in

C([0, T[; Hl(RN)) H

At last the following estimate holds

with

T a .

(3.9)

Y{T) = {E such that E e X(T), VE e X(T)}.

Proof We keep the same notations as in the proof of Theorem 3.1. As before, we assume that a > 1. We prove
this theorem by a fixed point method on the space Y(T) x Y(T). We saw that

\E\\

and we remark that, since (2a + 2)'"1 =

As imbeds in L2a+2(RN), as soon as a < ̂ , we have

+2(RJV)) J

Then, from Hölder's inequality, we obtain,

' I • (3.H)
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As,
£J_|2CT(£|| +E±)\ < (2a

an estimate on VT\(E^1E±) and V72(I5j|,i?j_) with X(T)-norm leads, in the same way as (3.11), to

. (3.12)

Estimâtes (3.11) and (3.12) establish the

Lemma 3.3. Let R! = 4C(|£?o|||iïi(R^) + l^oxliï1^^))? tf T i>s small enough, the application T opérâtes from
the bail B(0, Bf) of (Y(T) x y (T)) into itself.

Lemma 3.4. If T i$ small enough, T is a contraction on BR'(Y(T) X Y(T)).

Proof Let (E\\l,E±1) and (E\\2,E±2) belonging to Y(T) x Y(T). Starting from (3.8) and using the same idea
as for the proof of Lemma 3.3, we have

(\E\\i ~ E\\2\X(T) + \E±1 -

At this step, we have shown that, for T small enough, T is a contraction on BR'(Y(T) X Y(T)) for the
X(T) x X(T) topology. The Theorem 3.2 is thus proved by fixed point method on X(T) x X(T). In fact, we
can estimate T^E^E^) - T1(E\]rE±2) with the Y(T) x F(T)-norm,

^x2

^ + E j _ x ) - V / ( £ + E ) \

with f(u) = \u\2(7u.
Remark that

\f'{u)\<(2a+l)\u\2°,

|/"(ti)| < 2a(2a + l)^!2""1. (3.14)

Let us write u = E\\x+ E±1 and v = E\\2 + E±2,

V/(u) - V/(w) = /'(u)Vu + /»Vt> = /'(u)(V« - Vw)(/'(«) - f(v))Vv

= f'(u)(Vu-Vv)+ f f"(u + O{v-u)(v-u)dOVv.
Jo

ou, öiiioe 2 ( T + 2 -r 2 ( T + 2 — (2ff+2) d u u ^ T
2CT+2 ^ 2<r+2 T 2CT+2 ~~ (2<r+2)

+C sup |/"(u
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Using this result in (3.13), we obtain, by virtue of (3.14),

— i
2

As H1^) imbeds in L2(T+2(RiV)ï and from Hölder inequality, we obtain

E±1)-VT1{E\l2,E±2)\xçn + \VT2{E^

f
< C I \E\\x-\- E ^\
x 7 V - * (\Eh - Elh\Y(T) + \E±1 - EX2\Y{T)) .

This ensures that, for T small enough, T is a contraction on S ^ ( F ( r ) x Y(T)) for the y(T) x Y(T) topology.
Then, the Banach fixed point theorem shows that E dépends continuously on the initial data Eo for the Y{T)
topology.

The estimate (3.9) follows from Proposition 2.1, as the estimate (3.12). The Theorem 3.2 is then proved.

Theorem 3.3.
• ƒƒ£== 1 and a < j ^ then the solution of (3.1) with Eo G i J ^ E ^ ) belongs to C([ö,oo[;H1(RN)) n

Tq (\0 cyQ\-Wli2<T+2CRN\\ where £ — HL — N
^locUuJ °°L) vv \^ ))> wnere q — 2 20-+2

e /ƒ e = - 1 and a < %, then the solution of (3.1) with Eo e H1^1*) belongs to C{[Q,oo[\Hl(RN)) f)
ifoc([0>oo[; W^^iR*)), where § = f - ^ :

Proof These result s follows from the energy conservation.

2 2cr + 2 '
£ 1

This last is obtained, formally, by taking the real part of the inner product of (3.2) with E^ ,

by taking the real part of the inner product of (3.3) with E±t,

=E f V
JmN

Then, adding and integrating these two estimâtes, we obtain (3.15). • The first part of the theorem (e = 1) is
then obvious, since the solution, bounded in Hl(RN) C X2cr+2(IRiV), can not blow up.
• Assume that e = — 1, we have

+ a2\VE±(t)\2
LHRN) = C + 4 ^ | ü i | ( t ) + E±(t)\%gHR„y (3.16)
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We recall the Gagliardo-Nirenberg inequality,

Lemma 3.5. Let u be in H1^**),

i i2((2—iV)a+2)

Assume that a < jj, then, since the L2(KiV)-norm of E is conserved,

with fi <2. Finally, if a > 1, the estimate (3.16) leads to

\VE\2
L2[RN) < |VS,|(*)|ia(RJV) +ce2|V^x

Then, assume that E1 blows up in iï"1(IRAr), this is clearly impossible by virtue of the following inequality,

Then, the second part of Theorem 3.3 is proved. •

4. THE CONVERGENCE WHEN a GOES TO INFINITY

The estimâtes (3.4) and (3.9) are the main point to study the convergence of the solution when a goes to
infinity.

4.1. Convergence in L2(RN)

Theorem 4.1. Assume a < j | . Let us dénote Ea the solution of (3.1), passing to the limit, we have

Ea^Ein L*({0,T[;L2°+*(U»)) streng ( | = f " 3 ^

Ea - S±{.)(E0L) ->Ein L°°([0,T[;L2{RN)) VT < +00,

where E vérifies

E)

E\t=0 = ü?o||.

Proof. Remark that E, the solution of (4.1) can be estimated as for the solution of (3.1), that is to say, E
belongs to L«([0,T[]L2<r+2(RN)) fl Loo([0,T[;L2(EJV)) for all T > 0.
Let us modify the notations of the previous sections. The solutions of (3.1), (3.2) and (3.3) are indexed by a
(Eaj Ea\\ and ü?a± respectively):

Œat + VV.Ea + a2(A - VV.)£O = e\Ea\
2«Ea in ©'(R^),

(4.2)
7? 7? r~ r2/fiD)A/'\
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T h i s s y s t e m is s p l i t t e d a s fo l lows ,

ï « | | = ^ | | ( l ^ a | | + ^ a x | 2 a ( S a | | + B a X ) ) i n . . .

€ L2(RN), ( 3 )

iEa±t + a2 A £ a X = EVL (|-EQ|| + £a_L|2lT(-Ea|| + Ea±)) in

II/ r\ 11 + A ' _L-"O —̂ -*-' \ * ^ / *

In the previous section, with (3.4), we have shown that

Ea± -> 0 in L*([0,T[;L2*+2(R")).

Also,

To establish the theorem, we just have to prove that

Let Da = .Eajj — Ü7, D a vérifies the partial difFerential system

iDat + Ai ; a = ^|,(|£a|| + E^l^iE^ + Ea±) -

This last is equivalent to

Da(t)= f

Àppiying the proposition 2.1, we have

\D<x\L<t([0,T[-,L2°+2)nL°<>([0,T[;L'2(RN)) < C| l^ct | | + Ea± \2<7(Ea\\ + Ea±) - \E\2aE\Lq, (

The right-hand side is estimated in the same way as in the previous section to establish the Lemma 3.2.

\\Ea\\ +£a±|2(T(£a|| + Ea±) - \E\2a E\ Lq, (

We choose 7 = 2j§±^ then 0 = 2cr + 2 and we take <?x = ^ .
Then, as er < -̂  we can verify that

qlq

Then, there exists # = ^ — ̂  > 0 such that
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That is, if T < Tm < oo,

So, if we choose T small enough,

) < ~ lJ^)aUg([0,T[;L2<T+2(R7V)) + « l^

That is,
|^a|Lg([0,T[;Z,2^+2(MJV))nLoo([0,T[;L2(RAr)) < |^a_L |L^([0,T[;L

We then have shown that Da goes to zero when a goes to infinity on Lg([0, T[; L2a+2(RN))nL°°([0, T[;
if T is small enough. In fact, we have the same results for ail T < oo. Assume that there exists Tm < oo such
that

Da -> 0 in L*([0, T[; L^+^R^)) n L°°([0, T[; L 2 ^ ) ) VT < Tm

D a ^ 0 in L«([0, Tm + r?[; L2ff+2(R")) n L°°([0, Tm + 77(5 L2(RN)) Vr? > 0.

As previously, we show that there exits 5 > 0 such that

|^a|Lg([T,T+^[;L2CT+2)nL°°([T,T+5[;L2) < C\Da(T)\L2

Prom the first part of (4.5), we know that:

Da{T) - 0 in L^R") , (T < Tm)

Ea_L ^ 0 in

Then, let us choose T = Tm - | and the second relation of (4.5) is false. The Theorem 4.1 is so proved. D

4.2. Convergence in Hl(RN)

Let us now formulate a resuit on convergence of solution of (4.2) when a goes to infinity in

Theorem 4.2. Assume that a < jfz^, ifV±Eo —> 0 in iï1(R iV) when a goes to infinity, then

Ea^E in Loo([0,T[;iJ1(RJV)) VT < T*,

where E vérifies (4-1) and T* zs i^e existence time of the solution of (4-1) i

C([0, T[; ff^R^)) H Wl^([0, T

see theorem 1.1, also liminf Ta > T*.
a—>+oo

Ife = l or if e = —1 and a < -^ /̂ien T* = +00.

Proo/. Remark that Et the solution of (4.1) is well defined in Loo([0,r[;iJ1(MAr)) n W^
for T (eventually) small enough. This can be shown as for jBa||, see [2].

In the previous section, with (3.9), we have shown that

Ea± -* 0 in W^q([0}T[-L2a+2(RN)) VT < T*.
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Also,
Ea± ~ S±(t)E0± - 0 in L°°([0,T[; J ï 1 ^ " ) ) VT < T*.

It remains to be shown that

£?a|| -> E in Wltq([0yT[]L2a+2(RN)) n L°°([0,T[; tf1^)) VT < T*.

We introducé again JDQ, = Ea^ — E,

Da(t)= f
Jo

The proposition 2.1 ensures that

l£)a|L5([0,T[;L2^2(RJV))nL-([0)T[;L2{tw)) < C \\Ea\
2a(Ea) - \E\2<JE\Lq,

That is,

l^«Ug([o,T[;L2-+2(iRiv ) )nI /0o ( [0 ;T[ ;L2 (E^ ) ) < C\(\Ea\
2a 2 |

As H 1 ^ ) C L2flr+2(RJV) (a < ^ ) , and from Hölder inequality, we have

As previously, at this step, we can conclude that the left-hand side of (4.7) goes to zero. It remains to be shown
that

typ. v r\ i-r-» TQf\r\ TT T-?rr+2/TT^TVW ^ r o o / r n mf ^2/'•fmA^^^ v/T1 ^ T1*

v i y a —•> u in L,^ ([u, J [; LJ (M. j j i i XJ QU, J. [; u \K )) Vi < 1 .
As,

Vöa(t)= f Sll(t-s)VVll(\Eall^Ea±\2-(Ea]{+Eal_)-\E\^
Jo

applying the proposition 2.1, we have

a ~ \E\2° E) \Lq,

The right-hand side is treated as in the previous section to estabiish the Lemma 3.4. We recail these estimâtes.

| aEa - \E\ CT^)|Lg'([O)T[;L(2£r+2)') < c\Ea\£o([o,T[-yL
2°

As i ï 1 ^ ^ ) C L2<T+2(3Riv) (since a < 7^2), and from Hölder inequality, we obtain

N))- (4-8)
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As qf < g, if we choose T small enough (4.7) and (4.8) ensure that

That is,

\Da\w
1^([0,T[-iL

2^+2(RN))nL^([0,T[]H
1(MN)) < \Ea± |

We then have shown that Da goes to zero when a goes to infînity in

as soon as T is small enough. In fact, we have the same results for ail T < T*. Assume that there exists
Tm < T* such that

DŒ -> 0 in f ^ d O . T l ; ^ 2 ^ ) ) n L°°([0,T[; tf1^)) VT < Tm
(4 9)

Da * 0 in W^([0,Tm + r?[; L2ff+2(R*)) H L°°([0, Tm + r?[; if H»^)) ^ > 0.

As previously, we show that there exits ö > 0 (5 < T* — Tm) such that

By virtue of the first part of (4.9), we have

Da(T) -> 0 in Hl{RN), (T < Tm).

Also,

Let us choose T = Tm — | , then the second relation of (4.9) is false. The Theorem 4.2 is so proved. D

The author wish to thank the professors T. Colin and P. Fabrie, for their helpful remarks and their suggestions.
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