@article{M2AN_2000__34_1_159_0, author = {Beck, Rudi and Hiptmair, Ralf and Hoppe, Ronald H. W. and Wohlmuth, Barbara}, title = {Residual based a posteriori error estimators for eddy current computation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {159--182}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {1}, year = {2000}, mrnumber = {1735971}, zbl = {0949.65113}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_1_159_0/} }
TY - JOUR AU - Beck, Rudi AU - Hiptmair, Ralf AU - Hoppe, Ronald H. W. AU - Wohlmuth, Barbara TI - Residual based a posteriori error estimators for eddy current computation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 159 EP - 182 VL - 34 IS - 1 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_1_159_0/ LA - en ID - M2AN_2000__34_1_159_0 ER -
%0 Journal Article %A Beck, Rudi %A Hiptmair, Ralf %A Hoppe, Ronald H. W. %A Wohlmuth, Barbara %T Residual based a posteriori error estimators for eddy current computation %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 159-182 %V 34 %N 1 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_1_159_0/ %G en %F M2AN_2000__34_1_159_0
Beck, Rudi; Hiptmair, Ralf; Hoppe, Ronald H. W.; Wohlmuth, Barbara. Residual based a posteriori error estimators for eddy current computation. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 1, pp. 159-182. http://archive.numdam.org/item/M2AN_2000__34_1_159_0/
[1] Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. IMPACT Comput. Sci. Engrg. 1 (1995) 3-35.
, , and ,[2] Formulation of the eddy-current problem. IEE Proc. A 137 (1990) 16-22.
and ,[3] Analysis of three dimensional electromagnetic fileds using edge elements. J. Comp. Phys. 108 (1993) 236-245. | Zbl
[4] Some remarks on the characterization of the space of tangential traces of H (rot; Ω) and the construction of an extension operator. Manuscripta math. 89 (1996) 159-178. | MR | Zbl
and ,[5] A justification of eddy currents model for the Maxwell equations. Tech. Rep., IAN, University of Pavia, Pavia, Italy (1998). | Zbl
, and ,[6] Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR | Zbl
, , and ,[7] Locally adapted tetrahedral meshes using bisection. SIAM J. on Sci. Compt (submitted). | MR | Zbl
, and ,[8] Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736-754. | MR | Zbl
and ,[9] A posteriori error estimates for the finite element method. Internet. J. Numer. Methods Engrg. 12 (1978) 1597-1615. | Zbl
and ,[10] PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0. SIAM, Philadelphia (1990). | MR | Zbl
,[11] Refinement algorithm and data structures for regular local mesh refinement, in Scientific Computing, R. Stepleman et al., Ed., Vol. 44, IMACS North-Holland, Amsterdam (1983) 3-17. | MR
, and ,[12] some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. | MR | Zbl
and ,[13] Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181-191. | MR | Zbl
,[14] Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surveys for Mathematics in Industry. | MR | Zbl
, , , and ,[15] Multilevel solution of the time-harmonic Maxwell equations based on edge elements. Tech. Rep. SC-96-51, ZIB Berlin (1996). in Internat J. Numer. Methods Engrg. (To appear). | MR | Zbl
and ,[16] Tetrahedral grid refinement. Computing 55 (1995) 355-378. | MR | Zbl
,[17] An adaptive multilevel approach to parabolic equations I. General theory and lD-implementation. IMPACT Comput. Sci, Engrg. 2 (1990) 279-317. | Zbl
,[18] An adaptive multilevel approach to parabolic equations II. Variable-order time discretization based on a multiplicative error correction. IMPACT Comput. Sci. Engrg. 3 (1991) 93-122. | MR | Zbl
,[19] A posteriori error estimates for elliptic problems in two and three spaces dimensions. SIAM J. Numer. Anal. 33 (1996) 1188-1204. | MR | Zbl
, and ,[20] Mixed finite elements and the complex of Whitney forms, in The Mathematics of Finite Elements and Applications VI J. Whiteman Ed., Academic Press, London (1988) 137-144. | MR | Zbl
,[21] A rationale for edge elements in 3D field computations. IEEE Trans. Mag. 24 (1988) 74-79.
,[22] Solving Maxwell's equations in a closed cavity and the question of spurious modes. IEEE Trans. Mag. 26 (1990) 702-705.
,[23] Electromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993). | MR | Zbl
,[24] Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. in Academic Press Electromagnetism Series, no. 2 Academic Press, San Diego (1998). | MR | Zbl
,[25] A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2445. | MR | Zbl
and ,[26] A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465-476. | MR | Zbl
,[27] The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4 North-Holland, Amsterdam (1978). | MR | Zbl
,[28] Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory. ACES J. Appl. Math. 11 (1996) 70-84.
, , and ,[29] Transient eddy current calculation with the FI-method. in Proc. CEFC '98, IEEE (1998); IEEE Trans. Mag. submitted.
and ,[30] Approximation by finite element functions using local regularization. Revue Franc. Automat. Inform. Rech. Operat. 9, R-2 (1975) 77-84. | EuDML | Numdam | MR | Zbl
,[31] Singularities of electromagnetic fields in polyhedral domains. Tech. Rep. 97-19, IRMAR, Rennes, France (1997). | Zbl
and ,[32] Singularities of Maxwell interface problems, Tech. Rep. 98-24, IRMAR, Rennes, France (1998).
, and ,[33] Quasi-stationary fields for microelectronic applications. Electrical Engineering 79 (1996) 145-155.
,[34] Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magnetics MAG-30 (1994) 2980-2983.
, , , and ,[35] Introduction to adaptive methods for differential equations. Acta Numerica 4 (1995) 105-158. | MR | Zbl
, , and ,[36] An adaptive finite element method for linear elliptic problems. Math. Comp. 50 (1988) 361-383. | MR | Zbl
and ,[37] Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[38] Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR | Zbl
and ,[39] Multigrid method for Maxwell's equations. Tech. Rep. 374, Institut für Mathematik, Universität Augsburg (1997). | Zbl
,[40] Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | MR | Zbl
,[41] Adaptive multilevel iterative techniques for nonconforming finite element discretizations. East- West J. Numer. Math. 3 (1995) 179-197. | MR | Zbl
and ,[42] A comparison of a posteriori error estimators for mixed finite elements. Math. Comp. 68 (1999) 1347-1378. | MR | Zbl
and ,[43] Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. Model. Math. Anal. Numér. 30 (1996) 237-263. | EuDML | Numdam | MR | Zbl
and ,[44] Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM J. Numer. Anal. 34 (1997) 1658-1687. | MR | Zbl
and ,[45] Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, M. Krizck, P. Neittaanmäki and R. Stenberg Eds., Marcel Dekker, New York (1997) 155-167. | MR | Zbl
and ,[46] Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Stat. Comp. 16 (1995) 210-227. | MR | Zbl
,[47] A mixed method for approximating Maxwell's equations. SIAM J. Numer. Anal. 28 (1991) 1610-1634. | MR | Zbl
,[48] Analysis of a finite element method for Maxwell's equations. SIAM J. Numer. Anal. 29 (1992) 714-729. | MR | Zbl
,[49] Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341. | EuDML | MR | Zbl
,[50] Hierarchical basis preconditioners for second order elliptic problems in three dimensions. Ph.D. thesis. Dept. of Math., UCLA, Los Angeles, CA, USA (1990).
,[51] Multilevel finite element approximation, Teubner Skripten zur Numerik, B.G. Teubner, Stuttgart (1994). | MR | Zbl
,[52] Fully discrete finite element approaches for time-dependent Maxwell equations. Tech. Rep. TR MATH-96-31 (105), Department of Mathematics, The Chinese University of Hong Kong (1996). Num. Math. (to appear). | MR | Zbl
and ,[53] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR | Zbl
and ,[54] A posteriori error estimators for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445-475. | MR | Zbl
,[55] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996). | Zbl
,[56] Geometric Integration Theory. Princeton Univ. Press, Princeton (1957). | MR | Zbl
,[57] Adaptive techniques in the finite element method. Commun. Appl. Numer. Methods 4 (1988) 197-204. | Zbl
and ,