On a 2D vector Poisson problem with apparently mutually exclusive scalar boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 1, p. 183-200
@article{M2AN_2000__34_1_183_0,
     author = {Guermond, Jean-Luc and Quartapelle, Luigi and Zhu, Jiang},
     title = {On a 2D vector Poisson problem with apparently mutually exclusive scalar boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {1},
     year = {2000},
     pages = {183-200},
     zbl = {0949.65116},
     mrnumber = {1735970},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_1_183_0}
}
Guermond, Jean-Luc; Quartapelle, Luigi; Zhu, Jiang. On a 2D vector Poisson problem with apparently mutually exclusive scalar boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 1, pp. 183-200. http://www.numdam.org/item/M2AN_2000__34_1_183_0/

[1] Y. Achdou, R. Glowinski and O. Pironneau, Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations, Numer. Math. 63 (1992) 145-163. | MR 1182970 | Zbl 0760.76041

[2] I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | MR 359352 | Zbl 0258.65108

[3] C. Bernardi, Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes. Thèse de 3e Cycle, Université de Paris VI, France (1979).

[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[5] F. El Dabaghi and O. Pironneau, Stream vectors in three dimensional aerodynamics. Numer. Math. 48 (1986) 561-589. | MR 839617 | Zbl 0625.76009

[6] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077

[7] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. | MR 524511 | Zbl 0427.65073

[8] P. Neittaanmaki and M. Krizek, in Efficient Solution of Elliptic Systems, Finite element approximation for a div-rot System with mixed boundary conditions in non-smooth plane domain. Notes in Numerical Fluid Mechanics, Vol. 10, W. Hachbush Ed., Vieweg Publishing, Wiesbaden, Germany (1984); see also Appl. Math. 29 (1984) 272-285. | MR 754079 | Zbl 0575.65125

[9] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993). | MR 1266843 | Zbl 0784.76020

[10] L. Quartapelle and A. Muzzio, Decoupled solution of vector Poisson equations with boundary condition coupling, in Computional Fluid Dynamics, G. de Vahl Davis and C. Fletcher Eds., Elsevier Science Publishers B.V., North-Holland (1988) 609-619.

[11] L. Quartapelle, V. Ruas and J. Zhu, Uncoupled solution of the three-dimensional vorticity-velocity equations. ZAMP 49 (1998) 384-400. | MR 1629537 | Zbl 0912.35124

[12] V. Ruas, L. Quartapelle and J. Zhu, A symmetrized velocity-vorticity formulation of the three-dimensional Stokes system. C.R. Acad. Sci. Paris Sér. IIb 323 (1996) 819-824. | Zbl 0923.76033

[13] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New York (1973). | MR 443377 | Zbl 0356.65096

[14] J. Zhu, A.F.D. Loula and L. Quartapelle, A vector Poisson problem with coupling boundary conditions in a Lipschitz 2D domain, Research Report, Laboratório Nacional de Computação Cientifica, CNPq, N° 30 (1997).

[15] J. Zhu, A.F.D. Loula and L. Quartapelle, Finite element solution of vector Poisson equation with a coupling boundary condition. Numer. Methods Partial Differential Eq. 16 (2000). | MR 1727582 | Zbl 0956.65103

[16] J. Zhu, L. Quartapelle and A.F.D. Loula, Uncoupled variational formulation of a vector Poisson problem. C.R. Acad. Sci.Paris Sér. I 323 (1996) 971-976. | MR 1414568 | Zbl 0869.76069