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A MODEL PROBLEM FOR BOUNDARY LAYERS OF THIN ELASTIC SHELLS

PHILIPPE KARAMIAN1, JACQUELINE SANCHEZ-HUBERT1 '2

AND ÉVARISITE SANCHEZ P A L E N C I A 2

Abstract. We consider a model problem (with constant coefficients and simplified geometry) for the
boundary layer phenomena which appear in thin shell theory as the relative thickness e of the shell
tends to zero. For e — 0 our problem is parabolic, then it is a model of developpable surfaces. Boundary
layers along and across the characteristic have very different structure. It also appears internai layers
associated with propagations of singularities along the characteristics. The special structure of the limit
problem often implies solutions which exhibit distributional singularities along the characteristics. The
corresponding layers for small e have a very large intensity. Layers along the characteristics have a
special structure involving subspaces; the corresponding Lagrange multipliers are exhibited. Numerical
experiments show the advantage of adaptive meshes in these problems.

Résumé. Nous considérons un problème modèle (avec coefficients constants et géométrie simpli-
fiée) pour l'étude des couches limites qui apparaissent en théorie des coques élastiques minces lorsque
l'épaisseur relative e tend vers zéro. Pour e = 0, notre problème est parabolique, c'est donc un pro-
blème modèle pour les surfaces développables. Les couches limites le long et transversalement aux
caractéristiques ont des structures très différentes. Il apparaît aussi des couches internes associées à
la propagation des singularités le long des caractéristiques. Dans certains cas, à cause de sa structure
particulière, le problème limite a des solutions qui présentent des singularités faisant intervenir des
distributions le long des caractéristiques. Pour e petit, les couches correspondantes sont de très grande
intensité. Les couches le long des caractéristiques ont une structure particulière incluant des sous-
espaces ; les multiplicateurs de Lagrange correspondants sont mis en évidence. Les calculs numériques
montrent l'avantage de l'utilisation de maillages adaptés dans ce type de problèmes.
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1. INTRODUCTION

This paper is devoted to a model problem for the boundary and internai layers in shells so we first recall some
features of thin shell theory. For generalities on shells the reader may refer to [1,4,7,18]. Roughly speaking, a
shell is described by a thin body, of thickness 2e, close to a surface 5 the boundary of which is submitted to
some kinematic conditions. The mechanical behavior is described by two bilinear forms a(u^v) and e2b(uiv),
associated with the déformations of the intrinsic metrics and the variations of curvature, which are called the
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membrane form and the flexion form respectively. Note that the second one involves a factor e2, accounting for
the small rigidity of a thin body to flexion. This f act ent ails very spécifie asymptotic properties for small e, a
part of them will be described hereafter, we refer mainly to [5,7,19] for more details.

In the sequel, we only consider the so called "inhibited shells", i.e. such that the surface S along wit h the
kinematic boundary conditions is geometrically rigid. The corresponding System is of the form A + £2B, where
B is elliptic but A is of the same type as the points of the surface 5, i.e. elliptic, parabolic or hyperbolic at
elliptic, parabolic or hyperbolic points of the surface. In addition the order of dérivation in B is higher than
in A so that as e tends to zero there is a singular perturbation phenomenon. In the sequel, we shall focus on
the case when A is uniformly parabolic which corresponds to developpable surfaces. The limit process e \ 0 is
very singular, as it goes from a higher order elliptic system to a parabolic System. For e > 0, the energy space
V is chosen so that a + e2b be continuous and coercive on it, whereas the limit problem involves a new energy
space Va such that the form a is continuous and coercive on it. In fact, Va is the completion of V with the norm
\/a(-, •) (note that, it is a norm as a conséquence of the hypothesis of inhibition).

Obviously, the space Va contains functions which are less smooth than the functions of V. Consequently, the
solutions ue belong to V but the limit as € tends to zero is a less smooth fonction. As a conséquence, ue for
small e exhibits "boundary layers" i.e. narrow régions where the gradient grows very quickly. In fact, there
is another, even more important reason for the présence of boundary layers. Of course, as V c Va% the dual
spaces verify Va' C V1 so that the admissible forces which are in V' for e > 0 may not be admissible for the
limit problem. In this case, the energy of u£ tends to infinity, as we prove in Section 2.1. The corresponding
solution of the limit problem is out of Va and exhibits distributional singularities so that ue involves boundary
layers of large intensity (see also [11] in this context). It is to be mentioned that this situation is very common
in shell theory where the space Va, which dépends on the geometry, is often very large and consequently V£ is
a very small space. The most typical example of such a situation is given by the so called "sensitive shells" for
which the space V^ is so small that is does not contain the space V of test functions of distributions [12,13].
Obviously, for sensitive shells almost any loading ƒ is out of V£ but, even for non-sensitive shells "very usual"
loadings may be out of V£. For instance, in ruled surfaces with a free boundary along a generator, any loading
not vanishing on that generator is out of Vtt' (see [18], Sects. VII.2.4 and VII.4.2 as well as Sect. 2.2 of this paper
for the model problem).

It should be emphasized that the non-smoothness of solutions of the limit problem has important conséquences
on the finit e element computations of u£ for small e. It is nut hard to prove (see [6] for instance) that when ƒ ^ \rl

a

the convergence of the finite element approximations u% to uE cannot be uniform with respect to e € (0,£o)
with values in Va (and then also in any "smaller" space!). In other words, the smaller e is the smaller h must be
chosen in order to get a good approximation. We may refer to [8,10] for these features. As a resuit, the situation
in the present case, of inhibited shells, is analogous to that of non-inhibited ones where the non-uniformity of
the convergence is a conséquence of the phenomenon of locking which appears for any conformai approximation
with piecewise polynomial finite éléments [3].

Up to our knowledge, very little is known about boundary layers of shells. They are called "edge effects"
in [7,14] which are mainly concerned with layers transversal to the characteristics. Spécifie solutions may
perhaps be found in the impressive catalogue of analytical solutions of Rutten [16] but their utilisation in
spécifie problems is not evident. So, in this paper, we consider a model problem for the above mentioned shell
problems in the case when the limit operator A is parabolic. The model has constant coefficients and involves
two unknowns u\ and u<z\ the first one plays the role of the two tangential components of the displacement
vector in shells and the second is analogous to the normal component.

The paper is organized as follows: the model problem P (e) is presented hereafter at the end of this intro-
duction (see (1.1)—(1.5)). The limit problem P (0) is addressed in Section 2 which includes properties of the
asymptotic process e \ 0 (see Sect. 2.1) and a criterion for ƒ G Va' which is an adaptation of a criterion of
sensitivity [13] (see Sect. 2.2). The scaling for the layers, either along or across the characteristics is obtained
in Section 3 by a method based on asymptotic trends of exponential solutions. We point out that this method
was used in another context in [15]. Boundary layer along a clamped characteristic is considered in Section 4.
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The spécifie équations and boundary conditions are obtained by formai asymptotic expansions direct ly from the
variational formulation. The analogous problem for a free boundary is handled in Section 5, two cases appear
according to the loading vanishes or not on the boundary. In the second case, the intensity of the layer is very
much larger because ƒ ^ Vf

a. Section 6 is devoted to the case of internai layers along the characteristics, the limit
of which is the phenomenon of propagation of singularities. The structure of the characteristic layers involves
a special structure involving subspaces. The corresponding Lagrange multiplier is considered in Section 7. The
more classical case of layers transversal to the characteristics is addressed in Section 8. In Section 9, we prove
that the limit as e \ 0 of the internai layers are the solutions in the distributions sense of the limit problem
which were given in Section 2.4 for ƒ ^ V^. Section 10 contains numerical experiments with finite element
approximations, mainly for e = 10~3. The advantage of using meshes adapted to the spécifie features of the
layers is shown. The principal results, thicknesses and intensities of the layers in different cases are summed up
in a table in Section 11.

The model problem P (e) is defined as follows. Let us consider the domain fi = (O,TT) X (O,TT) of the plane
x = (#1, X2). The boundary dfi is composed of two parts Fo and Fi which are respectively the "clamped " part
and the "free" part, they will be precisely defined later. Several choices will be done but, in any case, Fo is
made of whole sides and always contains two adjacent sides.

The configuration space V is a space of éléments v = (vx,v2) satisfying the boundary conditions:

vi = v2 = dnv2 = 0 on Fo (1.1)

where dn dénotes the normal dérivâtive to the boundary, more precisely

V = {v e H^fl) x H2{ty;v satisfies (1.1)} • (1.2)

We consider the two bilinear forms

a{u,v)= f {(d1u1)(d1vl) + {d2u1-U2)(d2V1-V2)]dx (1.3)
Ja

dau2dav2dx = (^2,^2)2 • (1.4)b(u,v) =

Let us dénote by ƒ a given element of Vf (the dual of V), the problem P(e) writes:

Find u£ such that W G V
v),v.a(u*,v)+e*b(u*,v) = (f9v)v,

From the previous hypotheses, it immédiately follows that the problem P(e) with fixed e > 0 is continuous and
coercive on V, so that the existence and uniqueness of the solution is ensured by the Lax Milgram theorem.
Clearly the coerciveness constant is of order e2 so that it vanishes as e \ 0.

This problem is somewhat classical. It is equivalent to the System of équations

with the principal boundary conditions (1.1) on Fo and the natural boundary conditions on

dnu\ -
e2 [dnu% - ÔnAu£

2 - dt (dntu
£
2)\ = F2 (1.7)

e2dnnu\ = C
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where n (resp. t) is the unit outer normal (resp. the unit tangent) to Fi and where

(f,v)v,v= J fiVidx + J (Flvl+F2v2+C^\ds (1-8)

in the sequel, we always take F\ = Fi — C = 0 unless the opposite is explicitly said.
Moreover,

v G V, a(v,t;) = 0 =>• t; = 0 (1.9)

so that

N v o = «« ,« ) )* (1.10)

is a norm on V. We dénote by Va the completion of V with this norm. We note that (1.9) is analogous to the
hypothesis of inhibition in shell theory.

Also we define the limit problem P(0) in variational form:

Find u° G Va such that \/v eVa

a{v?, v) = (ƒ, i;)Vû/ya for a given ƒ G Va'
 ( L 1 1 )

which is obviously continuous and coercive on Va. It should be noticed that the hypothesis ƒ G V£ is somewhat
restrictive as we shall see later. When this hypothesis is satisfied the existence and uniqueness of u° in Va are
ensured.

2. T H E P R O B L E M P(0)

2.1. First considérations on the converge process

In order to write down the équations and boundary conditions associât ed with classic al intégrations by parts,
the space L2(Çl) is identified with its dual; this will be used in the explicit description of dual spaces.

As foilows from the completion process, V is densely contained in Va so that

Va C V'. (2.1)

Classical theory (Theorem 2.1) of convergence only holds for ƒ G V*a. In the case when ƒ G Vf but ƒ ^ Vf
a

gênerai resuit s of convergence are not available. The solution u° of the limit problem may or not exist but likely
not in the finite energy space Va* We recall that the energy of the solutions is defined by

E{us) = \ [a(ue,u*) + e2b(u£,uE)] (2.2)

E(u°) = \a(u°y). (2.3)

The classical resuit is:

Theorem 2.1. Let ƒ G V^ be fixed independently of e. Let u£ and u° be the solutions of (1.5) and (LU)
respectively. Then

ue -+u° inV strongly (2.4)

and there exists a constant C such that

E(u£) <C. (2.5)
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The proof is classical, see for instance Section VI. 1.3 in [18]. Let us recall that (2.5) follows from (1.5) with
v = u£, Moreover, we have:

Theorem 2.2. Let ƒ G V' be fixed independently of e. Let ue the solution of (1.5), then

1. The necessary and sufficient condition for E (u£) to remain bounded for e \ 0 is that ƒ G V^.
2. If ƒ ^ V^ then E (u€) tends to infinity as e \ 0.

Proof. In order to prove the fîrst assertion, from Theorem 2.1, it is sufficient to prove that (2.5) implies ƒ G V^.
To this end, (2.5) implies that for a subsequence

b(u£
yu

£)<~ (2.6)

and

u£ —> u* weakly in Va

for some u* G Va- Let us fix v G V in (1.5), then

a(u£ ,u) —> a (u*,v)

e2b(u£,v) <e2b{u£,u£)ib(v,v)^ < eC -> 0

so that

a{u*,v) = (f,v) \/veV (2.7)

The left-hand side is a functional of the variable v defined on V', continuons on Vai so that the right-hand side
is also, and this implies that ƒ G V '̂.

To prove the second assertion, let us suppose that it is false. Then for a subsequence we should have (2.5)
and in this case the proof of the fîrst assertion shows that ƒ G Vf

a what is a contradiction: Theorem 2.2 is
proved. D

Remark 1. We shall see that the space Va is somewhat "large" so that Va' is "small" and ƒ G V'a implies
strong restrictions which are not satisfied by "usual" loadings ƒ. Consequently, we are often in the situation
of the second assertion of Theorem 2.2. This situation is in some sensé "pathological". As we noted above,
when ƒ ^ VI the limit problem P(0) may or not have a solution u° but if it does, it is not in the finite energy
space Va. This is the reason why we shall consider in the sequel solutions of the limit problem which are not
variational solutions in Va. An example of this situation is shown in [11] where it is seen that the energy confîned
in boundary and internai layers is not bounded (for e \ 0) whereas the energy in outer régions does. Later
on we shall search for the asymptotic behavior of u€ using the method of matched asymptotic expansions [20]
which shall exhibit such kind of layers. •

2.2. A criterion for ƒ G V}
a and examples

In this section, we shall consider functionals ƒ defined in (1.8) by functions fi (on Cl) with Fi = C = 0. The
form a defined in (1.3) is associated with the two quantities

71 S"! " T1 (2-8)
72 (u) =à2ui -u2.
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Let us define the injective application 7 by (2.8)

V 2* (L2)2

this application may be continued by continuity to Va to an isomorphism from Va onto its range X which is
clearly a closed subspace of (L2) .

Let us now consider the functional

defined on V. Then we have:

hiv)= f {fivi+hv2)dx (2.9)
Jn

Theorem 2.3. The functional defined by (2.9) may be extended by continuity to Va (that is equivalent to f e V'a)

if, and only if, there exists T = (T1,!12) G (L2) such that

f (hvi+f2V2)dx = ( T \ 7 i (v))L2 + (T2,72(t;))L2 \/v € V. (2.10)
Jn

Proof. Let us suppose that there exists T € (L2) which satisfies to (2.10), then the right-hand side in (2.10)
is continuous on V for the topology of Va and consequently the left hand side also does: this proves that the
condition is sufficient. If (2.9) may be extended by continuity to Va) then let us dénote by

(Lv)Viva (2-11)

the functional so extended. Let F be its image by the isomorphism 7, it is continuous on X and defined by

(2.12)

a functional F (£) continuous on
and, by the Riesz theorem, it may be expressed as the scalar product
Prom the Hahn-Banach theorem, we know that it may be extended to a functional F (£) continuous on (L2)

^ ( 0 = <T\0(L»)' V£e(L2)2 (2.13)

where T is some element of (L2) . In particular (2.13) holds for any f e l and even for any £ of the form
£ — l(v) w u^ n v G V (not necessarily to Va). Then, from (2.13), we get

( ƒ , v)= f f2v2) dx = (T, 7(v)

the necessity of the condition is then proved. D

Example 2.1. Let us consider the case when the whole boundary is clamped and let ƒ1, ƒ2 be smooth functions.
We shall see that ƒ £ V£. Indeed, (2.10) explicitly writes

/ (fivi + f2V2) dx= f [TtdiV! + T2 (d2vi - v2)] dx \/v G V. (2.14)
Jvt Jn
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Taking v G [T>{tï)]2 we obtain

h = -diTi - d2T2 (2.15)

As the two components f\ and f2 are smooth it is possible to construct smooth T1 and T2, in particular
)2G (L2)2 , satisfying (2.15). Then we have

+ f2v2) dx= [ [(-ôiTi - 92T2) ux + (-T2) v2] dx W G V.
Jn

(2.16)

In the considered case of a clamped boundary we have V = HQ X HQ SO that an obvious intégration by parts
in (2.16) gives (2.14). It then follows from Theorem 2.3 that

• /eV; ' . (2.17)

Consequently, from Theorem 2.2 we see that the solution u£ of (2.12) is such that the energy E (u£) of u£

remains bounded as e \ 0.

Example 2.2. We consider again a totaly clamped boundary but fi are no more smooth functions. We shall
take

_ ƒ 0 if x2 < TT/2
\ if x2 > vr/2

(2.18)

the given forces defined on the domain Q. We emphasize that the discontinuity of ƒ is along a curve x2 = const.
We shall see later that these curves are the char act eristics of the problem P(0). Let us prove that ƒ ^ V'a.

Indeed, we are showing that T\^T2 G L2 and satisfying (2.14) cannot exist. If this was the case then taking
v € [D (Çl)] we should have (2.15). In addition, as ƒ1, ƒ2 are piecewise smooth the corresponding traces of
T\U\ + T2n2 make sensé, allowing classical intégration by parts. Then, from (2.14) with arbitrary v we get

7T

2
(2.19)

where the brackets dénote the jump across the discontinuity. We then see that (2.19) with (2.15) and (2.18)
are not compatible. So that T\,T2 cannot exist. According to Theorem 2.3 the given force ƒ does not belong to
V^ Consequently, from Theorem 2.2 we see that the solution u£ of (2.12) is such that the energy E(ue) tends
to infinity as e \ 0.

Example 2.3. Now we consider a smooth given force ƒ but the boundary is constituted of two parts Fo and
Fi. We recall that Fo is clamped while Fi is free. We shall take as Fx the part x2 = 0 of the boundary. We
emphasize that, as in the previous example, this free boundary is along a characteristic of the problem P(0).
The space V is then defined as

V = {Vl € H' (îî) ; < o = 0 } x <L e H2 (fî) ; v}ro = ^ = 0' (2.20)
r0
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Exactly as in the previous example if Ti, T2 exist, then they satisfy

( {T2=);d2T2

y T2 = 0 on Ti.
(2.21)

It is clear that (2.21)2 and (2.21)3 are compatible if and only if ƒ2 Ir̂  = 0- Oppositely, when this condition
is satisfied we may construct smooth functions Ti,T2 satisfying (2.21) and classical intégration by parts show
that Ti,T2 satisfy (2.10). Then f2 = 0 on I \ is the necessary and sufficient condition for ƒ G V^. Obviously it
is also the necessary and sufficient condition for E (u£) to remain bounded as e \ 0.

2.3. Equa t ions and b o u n d a r y condit ions of P (0)

The variational formulation (1.11) of the limit problem is somewhat abstract as Va was only defined by
completion. We have not a précise description of Va which dépends on the disposition of F o and Fi. But in any
case it follows from (1.10) and (1.3) that v E Va => diV\ G L2(Cl). Moreover, from the fact that Fo contains
at least one of the vertical segments of the boundary and Poincaré inequality for X2 ~ const., it follows that
Vi G L2 (Cl). Consequently, the principal boundary condition ^i = 0 is inherited by Va on the parts of F o which
are tranversal to X2 = const.

As for V2, if v G Va, it follows from (1.10) and (1.3) that t>2 is the sum of an element of L2 (Q) and c^ i so that
the principal boundary conditions of v\ on X2 = const. and of V2 everywhere are lost in the completion process.
This allows us to write down the équations and boundary conditions of P(ö) (without a précise description of
VB):

+ d2u2 = h (r> 99\
+u2=h l ]

ƒ -

= 0 on the parts of FQ transversal to X2 = const.ƒ , ,
\ diUi = 0 on the parts of Fi transversal to X2 = const. '

obviously, the first of these boundary conditions is a principal one on Va as we said above, whereas the second
one is a natural condition coming from intégration by parts.

Clearly (2.22) is equivalent to

-dim - h - d2h (2.24)

(2.25)

Under this form it is obvious that the limit problem is essentially equivalent to (2.24) for u\. This équation is
an elliptic one with respect to x\ with parameter x2- In Cl it is parabolic with double characteristics x2 = const.
As X2 appears as a parameter, ƒ1 and ƒ2 may be chosen to be distributions of X2 with values in an appropriated
space for the variable x\. Consequently, when ƒ2 is not sufnciently smooth with respect to £2, the équations
(2.22) and the boundary conditions (2.23) keep a sense in a more gênerai framework which is not that of the
variational problem (1.11).

Let us define the operator A by

Au - -a?ui (2.26)

for functions depending on the variable x\ and the evident boundary conditions coming from (2.23). We note
that according to the hypothesis that FQ and Fi are made of whole sides of the boundary of Cl, this operator is
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independent of x2 so that it commutes with differentiations with respect this parameter. Obviously, the solution
of (2.24), (2.25) then writes

\ u 2 ( . , x2) = / 2 ( . , x2) + A'1 [d2fi (•, x2) - d\h (•, x2)] .

2.4. Solutions in the sensé of distributions

According to the previous considérations, we now consider the System (2.22) or (2.24) and (2.25) as well
as the solution (2.27) in the sensé of distributions of x2 with values in a space (for instance L2 (0,7r)) of the
variable x\. In order to exhibit the singular terms, we consider the case when / i = 0 and f2 is a piecewise
smooth fonction of the variable x2 with values in L2 (0, TT) with a discontinuity at a point 7 of (0,7r). Let (p and
^ ç L 2 (0,7r) be the jumps of the fonction and the first derivative at x2 = 7. The solution (2.27) takes the form

1 ( • , x 2 ) = - A " 1 ( d i f 2 ) - ( A - V ( • ) ) 5 7

2 ( - , x 2 ) = /2 ( . , z 2 ) - A - 1 (dPf ( ) ) ( A ' p ( ) ) 5 ( i " V W ) ô'

where d2 dénotes the derivative in the sense of fonctions. To fix ideas, let us take

) for x2 < 7 (2.29)

in this case the solution is

f wi (•, x2) = - (A- V (•)) &Y f /2 3QN

We shall see later that these solutions of problem P (0) are the limits of the corresponding solutions of problem
P (e) as e \ 0. Clearly this implies that the solutions of P (e) involve boundary (in fact internai) layers terms
which converge to the singular terms of (2.30).

2.5. Localization of the boundary and internai layers

As a conséquence of Section 2.4 it appears that the problem P(e) exhibits internai layers terms along the
segments x2 = const. where ƒ is not smooth as fonction of x2 with values in L2 (0, ir) for instance. The structure
of the internai layer dépends highly on the degree of non-smoothness of ƒ. We emphazise that x2 = const. are
the characteristics of the limit problem (2.24).

The explicit solution (2.30) exhibits an example of propagation of singularities along the characteristics. As
the operator A~l of the variable x\ is non-local, we may have tp with compact support in (0,7r) whereas the
solution u is singular along the whole segment of characteristic x2 = const., X\ G (0, TT).

Oppositely, let us consider the case when ƒi = 0 and f2 is piecewise constant with a discontinuity along a
curve C which is transversal to the characteristics. The method of solution with parameter x2 shows that u is
smooth unless on C where the fonction u2 and the first derivative of u\ have jumps. Clearly, in this case, ue

exhibits an internai layer along the curve C. In addition, if one of the extremities of C is a point interior to fi,
the solution is singular at this point and propagates from it along x2 = const.

On the other hand, as x2 is a parameter, the limit problem P(ö) has no boundary condition on x2 = 0 and
x2 = 1 so that ue exhibits boundary layers along these (characteristic) boundaries.

Also boundary layers appear along the parts of Po transversal to the characteristics (vertical parts of Fo) as
the boundary conditions (1.1) involving u2 disappear in the limit (compare with (2.23)). We shall call them
non-characteristic boundary layers.


