Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 1, p. 63-84
@article{M2AN_2000__34_1_63_0,
     author = {Lasiecka, Irena and Marchand, Rich},
     title = {Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {1},
     year = {2000},
     pages = {63-84},
     zbl = {0965.74069},
     mrnumber = {1735976},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_1_63_0}
}
Lasiecka, Irena; Marchand, Rich. Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 1, pp. 63-84. http://www.numdam.org/item/M2AN_2000__34_1_63_0/

[1] M. Bernadou, Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994).

[2] M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136. | MR 478954 | Zbl 0356.73066

[3] M. Bernadou and B. Lalanne, On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264. | Zbl 0706.73051

[4] M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992). | Zbl 0808.73045

[5] M. Bernadou and J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl. 60 (1981) 285-308. | MR 633006 | Zbl 0424.35040

[6] P.G. Ciarlet, The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058

[7] M.C. Delfour and J.P. Zolésio, Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations 128 (1995) 125-167. | MR 1392399 | Zbl 0852.73035

[8] W. Flügge, Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972). | MR 423958 | Zbl 0224.73001

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). | MR 737005 | Zbl 0536.65054

[10] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. | MR 524511 | Zbl 0427.65073

[11] R. Glowinski and M. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172. | MR 972516 | Zbl 0661.65105

[12] A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968). | MR 245245 | Zbl 0155.51801

[13] W.T. Koiter, On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54. | MR 192706

[14] J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989). | MR 1061153 | Zbl 0696.73034

[15] I. Lasiecka, Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control 36 (1998) 1376-1422. | MR 1627581 | Zbl 0911.93036

[16] I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal. 68 (1998) 123-145. | MR 1623321 | Zbl 0905.35092

[17] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[18] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972). | Zbl 0223.35039

[19] L. Mansfield, Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik 42 (1983) 213-235. | MR 720660 | Zbl 0536.73065

[20] R. Marchand, Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).

[21] V.G. Mazya and T.V. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985). | Zbl 0645.46031

[22] A. Raoult, Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).

[23] H.L. Royden, Real Analysis. Macmillan Publishing Company, 3rd edn. (1988). | MR 1013117 | Zbl 0704.26006

[24] V.I. Sedenko, The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.

[25] V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984). | MR 744045 | Zbl 0528.65052