@article{M2AN_2000__34_1_63_0, author = {Lasiecka, Irena and Marchand, Rich}, title = {Optimal error estimates for {FEM} approximations of dynamic nonlinear shallow shells}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {63--84}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {1}, year = {2000}, mrnumber = {1735976}, zbl = {0965.74069}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_1_63_0/} }
TY - JOUR AU - Lasiecka, Irena AU - Marchand, Rich TI - Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 63 EP - 84 VL - 34 IS - 1 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_1_63_0/ LA - en ID - M2AN_2000__34_1_63_0 ER -
%0 Journal Article %A Lasiecka, Irena %A Marchand, Rich %T Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 63-84 %V 34 %N 1 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_1_63_0/ %G en %F M2AN_2000__34_1_63_0
Lasiecka, Irena; Marchand, Rich. Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 1, pp. 63-84. http://archive.numdam.org/item/M2AN_2000__34_1_63_0/
[1] Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994).
,[2] Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136. | MR | Zbl
and ,[3] On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264. | Zbl
and ,[4] Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992). | Zbl
, and ,[5] An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl. 60 (1981) 285-308. | MR | Zbl
and ,[6] The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR | Zbl
,[7] Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations 128 (1995) 125-167. | MR | Zbl
and ,[8] Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972). | MR | Zbl
,[9] Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). | MR | Zbl
,[10] Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. | MR | Zbl
and ,[11] Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172. | MR | Zbl
and ,[12] Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968). | MR | Zbl
and ,[13] On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54. | MR
,[14] Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989). | MR | Zbl
,[15] Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control 36 (1998) 1376-1422. | MR | Zbl
,[16] Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal. 68 (1998) 123-145. | MR | Zbl
,[17] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). | MR | Zbl
,[18] Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972). | Zbl
and ,[19] Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik 42 (1983) 213-235. | MR | Zbl
,[20] Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).
,[21] Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985). | Zbl
and ,[22] Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).
,[23] Real Analysis. Macmillan Publishing Company, 3rd edn. (1988). | MR | Zbl
,[24] The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.
,[25] Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984). | MR | Zbl
,