Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 2, pp. 201-222.
@article{M2AN_2000__34_2_201_0,
     author = {Babin, Anatoli and Mahalov, Alex and Nicolaenko, Basil},
     title = {Fast singular oscillating limits and global regularity for the {3D} primitive equations of geophysics},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {201--222},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {2},
     year = {2000},
     mrnumber = {1765657},
     zbl = {0962.76020},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2000__34_2_201_0/}
}
TY  - JOUR
AU  - Babin, Anatoli
AU  - Mahalov, Alex
AU  - Nicolaenko, Basil
TI  - Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 201
EP  - 222
VL  - 34
IS  - 2
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_2000__34_2_201_0/
LA  - en
ID  - M2AN_2000__34_2_201_0
ER  - 
%0 Journal Article
%A Babin, Anatoli
%A Mahalov, Alex
%A Nicolaenko, Basil
%T Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 201-222
%V 34
%N 2
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_2000__34_2_201_0/
%G en
%F M2AN_2000__34_2_201_0
Babin, Anatoli; Mahalov, Alex; Nicolaenko, Basil. Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 2, pp. 201-222. http://archive.numdam.org/item/M2AN_2000__34_2_201_0/

[1] V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself. Amer. Math. Soc. Transl. Ser. 2 46 (1965)213-284. | Zbl

[2] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics. Appl. Math. Sci. 125 (1997). | MR | Zbl

[3] J. Avrin, A. Babin, A. Mahalov and B. Nicolaenko, On regularity of solutions of 3D Navier-Stokes equations. Appl. Anal. 71 (1999) 197-214. | MR | Zbl

[4] A. Babin, A. Mahalov and B. Nicolaenko, Long-time averaged Euler and Navier-Stokes equations for rotating fluids, In Structure and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference, K. Kirchgässner and A. Mielke Eds, World Scientific (1995) 145-157. | MR | Zbl

[5] A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier Stokes equations for uniformly rotating fluids. Europ. J. Mech. B/Fluids 15, No. 3, (1996) 291-300. | MR | Zbl

[6] A. Babin, A. Mahalov and B. Nicolaenko, Resonances and regularîty for Boussinesq equations. Russian J. Math. Phys. 4, No. 4, (1996) 417-428. | MR | Zbl

[7] A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of rotating shallow water equations. Proc. Acad. Sci. Paris Ser. 1 324 (1997) 593-598. | MR | Zbl

[8] A. Babin, A. Mahalov and B. Nicolaenko, Global regularity and ïntegrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asympt. Anal. 15 (1997) 103-150. | MR | Zbl

[9] A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech., B/Fluids 16, No 1, (1997) 725-754. | MR | Zbl

[10] A. Babin, A. Mahalov and B. Nicolaenko, On the nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. and Comp. Fluid Dynamics 11 (1998) 215-235. | Zbl

[11] A. Babin, A. Mahalov, B. Nicolaenko and Y. Zhou, On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. and Comp. Fluid Dyn. 9 (1997) 223-251. | Zbl

[12] A. Babin, A. Mahalov and B. Nicolaenko, On the regularity of three dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci., 9, No. 7 (1999) 1089-1121. | MR | Zbl

[13] A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Lett. Appl. Math. (to appear). | MR

[14] A. Babin, A. Mahalov and B. Nicolaenko, Global Regularity of 3D Rotating Navier Stokes Equations for Resonant Domains. Indiana University Mathematics Journal 48, No. 3, (1999) 1133-1176. | MR | Zbl

[15] A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits of stably stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, to appear in Mathematics of Atmosphere and Ocean Dynamics, Cambridge University Press (1999).

[16] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam (1992). | MR | Zbl

[17] C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de Rn. Annali della Scuola Normale Superiore di Pisa 4 (1977) 647-687. | Numdam | MR | Zbl

[18] P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atm. Sci. 52, No. 24, (1995)4410-4428. | MR

[19] A. J. Bourgeois and J. T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and the ocean. SIAM J. Math. Anal. 25, No. 4, (1994) 1023-1068. | MR | Zbl

[20] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771-831. | MR | Zbl

[21] J.-Y. Chemin, A propos d'un problème de pénalisation de type antisymétrique. Proc. Parts Acad. Sci. 321 (1995) 861-864. | MR | Zbl

[22] P. Constantin, The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. and Comp. Fluid Dyn. 9, No. 3/4, (1997) 183-191. | Zbl

[23] P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988). | MR | Zbl

[24] A. Craya, Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l'Air 345 (1958). | MR

[25] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press (1981). | MR | Zbl

[26] P. F. Embid and A. J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs. 21 (1996) 619-658. | MR | Zbl

[27] I. Gallagher, Un résultat de stabilité pour les équations des fluides tournants, C.R. Acad. Sci. Paris, Série I (1997) 183-186. | MR | Zbl

[28] I. Gallagher, Asymptotics of the solutions of hyperbolic equations with a skew-symmetrie perturbation. J. Differential Equations 150 (1998) 363-384. | MR | Zbl

[29] I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. | MR | Zbl

[30] E. Grenier, Rotating fluids and inertial waves. Proc. Acad. Sci. Paris Ser. 1 321 (1995) 711-714. | MR | Zbl

[31] J. L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70 (1993) 373-404. | MR | Zbl

[32] J. L. Joly, G. Métivier and J. Rauch, Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal. 114 (1993) 106-231. | MR | Zbl

[33] J. L. Joly, G. Métivier and J. Rauch, Coherent nonlinear waves and the Wiener algebra. Ann. Inst. Fourier 44 (1994) 167-196. | Numdam | MR | Zbl

[34] J. L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Scient. E. N. S. Paris 4 (1995) 28, 51-113. | Numdam | MR | Zbl

[35] D. A. Jones, A. Mahalov and B. Nicolaenko, A numerical study of an operator splitting method for rotating flows with large ageostrophic initial data. Theor. and Comp. Fluid Dyn. 13, No. 2, (1998) 143-159. | Zbl

[36] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd édition, Gordon and Breach, New York (1969). | MR | Zbl

[37] J.-L. Lions, R. Temam and S. Wang, Geostrophic asymptotics of the primitive equations of the atmosphere. Topological Methods in Nonlinear Analysis 4 (1994) 253-287, special issue dedicated to J. Leray. | MR | Zbl

[38] J.-L. Lions, R. Temam and S. Wang, A simple global model for the general circulation of the atmosphere. Comm. Pure Appl. Math. 50 (1997) 707-752. | MR | Zbl

[39] A. Mahalov, S. Leibovich and E. S. Titi, Invariant helical subspaces for the Navier-Stokes Equations. Arch. for Rational Mech. and Anal. 112, No. 3, (1990) 193-222. | MR | Zbl

[40] A. Mahalov and P. S. Marcus, Long-time averaged rotating shallow-water equations, Proc. of the First Asian Computational Fluid Dynamics Conference, W. H. Hui, Y.-K. Kwok and J. R. Chasnov Eds., vol. 3, Hong Kong University of Science and Technology (1995) 1227-1230.

[41] O. Métais and J. R. Herring, Numerical experiments of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202 (1989) 117.

[42] J. Pedlosky, Geophysical Fluid Dynamics, 2nd édition, Springer-Verlag (1987). | Zbl

[43] H. Poincaré, Sur la précession des corps déformables. Bull. Astronomique 27 (1910) 321.

[44] G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6, No. 3, (1993) 503-568. | MR | Zbl

[45] S. Schochet, Fast singular limits of hyperbolic PDE's. J. Differential Equations 114 (1994) 476-512. | MR | Zbl

[46] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970). | MR | Zbl

[47] S. L. Sobolev, Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia 18, No. 1, (1954) 3-50.

[48] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984). | MR | Zbl

[49] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia (1983). | MR | Zbl