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ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES * **

JERRY L Bona ! AND JiAHONG WU?

Abstract. Evolution equations featuring nonhneanty, dispersion and dissipation are considered here
For classes of such equations that include the Korteweg-de Vries-Burgers equation and the BBM-
Burgers equation, the zero dissipation limit 1s studied Uniform bounds independent of the dissipation
coefficient are derived and zero dissipation hmt results with optimal convergence rates are established
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1 INTRODUCTION

The mncorporation of dissipative effects 1s often crucial in obtamming good agreement between experimental
observations and the prediction of theoretical models describing the propagation of waves in nonlinear dispersive
media (¢f Bona et al [14] for an example from water-wave theory) To take account of dissipative mechanisms,
a Burgers-type term 1s often appended to nonhnearity and dispersion 1n these models (¢f Johnson [22,23] for
an early suggestion n this direction) Two such models are the well-known BBM-Burgers equation

Up + Ug + UWPUL — VUgy — Uz = 0 (11)
and the (generalized) Korteweg-de Vries-Burgers equation (GKdV-Burgers equation)
U + Uy + UPUL — VUzy + Ugze = 0, (12)

where u = u(z,t) 15 a real-valued function of two real varables z and ¢, p > 1 1s an integer, v > 0 and o > 0
are real numbers Numerous numerical simulations and analytical studies have been carried out to determine
the effect of such a term 1 these models (¢f [4,7,8,12,13,15,16,21,27-29]) Laboratory studies show (1 1) with
p = 1 and a switably chosen value of v has good predictive power 1n cases where nonlinear effects are not too
strong (e g the Stokes number 1s not too large i a water-wave context [14])

It 1s the purpose of this article to investigate theoretically aspects of the dissipative effects inherent in these
two models when v > 0 Consideration will also be given to a more general class of models of the form

ur + (P(w))z + vMu — (Lu)z =0, (13)
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where M and L are Fourier multiplier operators with non-negative symbols and P is a polynomial. say

p+1

P(u) = Z aru®

with ar € R, k = 1,2,---,p (see Bona [5] and Dix [21]). Interest will mainly focus on the pure initial-value
problem (IVP) for these equations wherein

u(z,0) = uo(x), is specified for z € R;
however, the initial- and boundary-value problem (IBVP)
u(z,0) = ug(z), for z € R,
u(0,t) = g(t), for t € RY,

for the BBM-Burgers equation will also be examined. In this article, particular interest is directed toward the
behavior of solutions in the zero dissipation limits.

In the limit as v tends to zero, equations (1.1, 1.2) and (1.3) formally reduce to the BBM equation, the
GKdV equation and a class of equations of KdV-type in generalized form,

Ut + Ug + uPuy — Ugzt = 0,
Ug + Uz + UP UG + Ugze = 0,
ut + (P(w))z — (Lu), =0,

respectively. This suggests comparing solutions u to one of these equations with dissipation to the solution v
of the corresponding equation without dissipation. It is expected that for various spatial norms || - ||,

lu(,t) = o( )l — 0 (1.4)

as v — 0, uniformly for ¢ > 0. Theory will be developed showing (1.4) is valid in certain circumstances.
Moreover, we will be able to determine the rate at which |u(-,¢) — v(-,t)| approaches zero. A crucial step in
proving such convergence results is to obtain v—independent bounds on solutions to the dissipative equations
and very often these are not available in the literature. Precise statements are provided presently.

The paper is organized as follows. Section 2 contains the relatively straightforward analysis of the zero-
dissipation limits for the IVP and the IBVP for the BBM-Burgers equation. In Section 3 we establish v-
independent bounds on solutions to the GKdV-Burgers equation in H* for all integers k > 0 (the Hilbert space
H* = H®(R) is the L2-based Sobolev class of functions whose derivatives to order k are all square integrable).
This result is interesting in its own right and crucial in obtaining the zero-dissipation limit results for the GKdV-
Burgers equation in Section 4. The relation (1.4) is determined to hold in |- || z+ and the convergence is shown to
be O(v) as v — 0. Section 5 is devoted to the equations of general type depicted in (1.3). Zero-dissipation limit
theory in this section relies upon growth conditions on the symbols of the dispersion and dissipation operators
L and M, respectively.

2. ZERO-DISSIPATION LIMIT FOR THE BBM-BURGERS EQUATION

This section is divided into two parts. The first part is devoted to the zero-dissipation limit for the IVP for
the BBM-Burgers equation while the second part deals with the zero-dissipation limit for the associated IBVP.
Consider first the IVP

Ut + Ug + UPUL — VUgy — O Ugge = 0, (z,t) € R x R, (2.1)
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u(z,0) = up(z), z € R, (2.2)

where p > 1 is an integer, ¥ > 0 and o > 0. As noted before, upon setting v = 0. equation (2.1) formally
reduces to

Ug + Uy + UPUL — P Uggs = 0. (2.3)

There is an adequate theory of well-posedness for the IVP (2.1--2.2) and the IVP (2.2-2.3) (¢f. Bona et al. [2,3]).
For our purpose, it suffices to have the following proposition, in which Cy(7, X) denotes the bounded continuous
mappings u: I — X, I =[0,T) C R*, with its usual norm.

Proposition 2.1. Let ug € H® with s > 1. Then there exists a unique solution u to the IVP (2.1-2.2) such
that, for each T > 0,

u € Cp([0,00); HYNC([0,T); H?) and Ofu € C([0,T); H®)
for each k > 0. Furthermore, for each T > 0 and k > 0, the solution map from ug to u is analytic from H® to
C*([0,T); H®).
The preceding results hold for the IVP (2.2-2.3), but in this case Ofu € C([0,T); H*T1) for each k > 0 and
T >0.

We shall use u and v to denote the solution to the IVP (2.1-2.2) and the IVP (2.2-2.3), with initial data ug

and vp, respectively. The following lemma provides v—independent bounds and other helpful inequalities for a
solution u to the IVP (2.1-2.2).

Lemma 2.2. Assume that p>1 and s > 1.
(1): If u is a solution of the IVP (2.1-2.2) with ug € H®, then for all t > 0,

t o<
lu(, )22 + o2 lug (- )12 + 2v / / uzdads = |Juol 7> + o ||uosl|Zs, (2.4)
JO — 00
Ue € PR XRY),  and [ul,)]z= < C(@)]luollas

where C(a) = max{a?, o ?}.
(ii): If v is a solution of the IVP (2.2-2.8) with initial data vo € H?®, then

lo()lla < Cla)|lvolla, [v(, O)lize < Cla)]vollm (2.5)

and, if s > 2,
/oo (’ug(:c,t) + azvgz(m7t)>dm < e“voc]iz1 ¢ /oc (vgx (z) + azvgm(z)> dz (2.6)
| st 9)lmds < 2Bal ol <U‘L - 1) - (2.7)

Remark 1. In the proof that follows. and frequently in the rest of the paper, intermediate calculations are
made that use regularity in excess of that assumed on the data and hence in excess of that which the solution
possesses. The final inequalities do not suffer from this defect, however. Such calculations are easy to justify in
the presence of a strong continuous dependence result. Simply regularize the initial data, make the calculation
securely for the resulting smooth solution, and then in the final inequality pass to the limit as the regularization
weakens to the identity. This standard procedure underlies much of the theory developed here, but we will not
constantly remind the reader of its invocation.
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Proof. The formula (2.4) is obtained by multiplying (2.1) by u, integrating over R x [0,¢] and integrating by
parts appropriately. To show that ug, € L?(R x R*"), multiply (2.1) by us, and integrate. To finish (i), it
suffices to remark that

a2 < 20l Ollzzllus( t)lize < C@)?|luolFn-

The proof of (2.5) is similar. To establish (2.6), multiply (2.3) by v, and integrate over R to obtain
o

d o
d—t/ (v2(z,t) + o?v2, (z,t))dz = 2/ (VgVzzVP) (2, t)d2

< PG OEma™ [ 02w 0 + 0% ), (28)

—

which leads to (2.6) after integration over [0, t]. The inequality (2.7) follows by combining (2.6) and the estimates

[vz(- 8)l| Lo < V2l[va(, )l vaa (s 8)llz2 < C(@)l|vollm lvsa(:, 8)l 22,
where the constants depending on a may be different from line to line.

In the following theorem, explicit estimates are established for the difference between a solution u to the IVP
(2.1-2.2) and v to the IVP (2.3-2.2). As a consequence of these estimates, u converges to v with the sharp rate
of order v if the initial difference is maintained at order v.

Theorem 2.3. Assume that p > 1 and s > 2. Let u be the solution of the IVP (2.1-2.2) with ug € H® and let
v be the solution of the IVP (2.3-2.2) unth wmatral data vog € H®. Then the difference w = u — v satisfies the
mnequality

lwllZz + (1 + o®)lwsllfz + o lwesliZs < e*® (JwolZa + (1 + a®)woslZe + o |wose|72) +v?e*PB(2),
(29)

for all t > 0, where wo = ug — o,

: o IRV liwoll? |
A(t) = max{1,0?) (t + ol + 6v/2op mas{fuoll5", ol ol oo (=7 — 1)) ,

and

lvoll? 5
B(t) = allvoll & lvoll 72 (e =t~ 1>.

If we consider a one-parameter family {uf},>o0 of mitial data such that ||uf — vollgz = O(v) as v — 0 (m
particular of uf = vo), then for any T >0 andt < T

lw( )12 + 1+ a®)lwa (-, OlI72 + @ was (8|72 = OW?)
as v — 0.
Proof. The difference w satisfies

wi + we + (WPUy — VPUg) — Vlige — 0P Waqt = 0. (2 10)
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Multiplying (2.10) by 2(w — ws.) and integrating over R yields

0

d L
aumﬁrH1+JMwu%+anﬂﬁ)+%/‘0&+w&ﬁx

—oC

=2 /00 (W — Wap)Uggda — 2 /_o:o(w — Wap ) (WPwy + (uP — vP)vy )dz.

—00

The first term on the right-hand side of (2.11) may be bounded by

lw(, 72 + llwas (-, )17 + 2”2/ Vi de.
—o0
Using the results of Lemma 2.2, there obtains
o o0
| e = o )una| < prmactiuolt’s ool Hus Ol | wda,
—oo —0o0

'|u 1171 T wdz+ Mol [ w2d
0 wdz + 2Huo||Hl wzdz,
00

— 00

} / wuPw,dz| <
oo

[ nnla? = o patn| < Bl ool Hos ol [ e

-0
oo

279

(2.11)

+ 2 mas(luo %, oo 155 e - 2) 1 / w?,dz,

=00

and

o0
]/ Wez WP W dz
— 0

These estimates are combined to give

1 > 1 (oo}
< gluolf [ widot Sluall, [ uida.

— o0

%Y@gA@Y@+Bm
where
Y(t) = lw(- )72 + (1 + o) Jwe (-, )17 + o[ waallFe,
Alt) = max{l»a_z}(l + lluo 5 + 3pmax{|luol %, llvol B Hiva (-, t)'lLoo)
and

B(t) = 21/2/1;32535(:1:, t)dx

By Gronwall’s inequality applied to (2.12), there is derived the upper bound

Y(t) < <Y(0) + /Ot B(S)ds) oo Alryar

(2.12)

(2.13)

(2.14)

(2.15)
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which is (2.9} after reintroducing Y, A and B as in (2.13, 2.14} and (2.15), respectively, and using the bounds
in Lemma 2.2.

Next. attention is given to the zcro-dissipation limit of solutions to the initial- and boundary-value problem
(IBVP)

Up + Ug + UPUp — Vltgy — 0% Uy = 0, (2,1) ERT x RT, (2.16)
u(0,t) = g1(t), t € RT, (2.17)
u(z,0) = uo(x), z € RT, (2.18)

where p > 1 is an integer, v > 0 and a > 0 and the consistency condition g1(0) = uo(0) is always assumed.
Our approach is to compare the solution u of the IBVP (2.16-2.17-2.18) with the solution v to the IBVP for
the BBM-equation

Vg + Vg + VPV — 0PUggy = 0, (z,t) € RT x RT, (2.19)
o(0,6) = 92(),  tERY, (2.20)
v(z,0) = vo(z), z € RT, (2.21)

in which g2(0) = vy(0).

The well-posedness of both the IBVP (2.16-2.17-2.18) and the IBVP (2.19-2.17-2.18) has been established
by Bona, Bryant and Luo (¢f. [6,10]). The following result suffices for our purposes.

Proposition 2.4. Let T > 0, 1 < p < 4, ug € CZRT) N H?*(R") and g1 € C*0,T) with g:1(0) = uo(0)
(respectively, vo € CE(RT) N HARY) and go € C'(0,T) with g2(0) = vo(0)). Then the IBVP (2.16-2.17-
2.18) (respectively, the IBVP (2.19-2.20-2.21)) has a unique solution u such that, for any finite T > 0, u €
B2'(R*) N C([0,T); HX(RY)) (respectively, v € B3 (Rt) n C([0,T); HXR")). Furthermore, the bound for
|[ul| g2 is independent of v for small v.

In Proposition 2.4 B! (R*) stands for the functions u defined on R* x [0, T] such that 88 u are continuous
and bounded over R x [0,7T] for 0 < 4 < k and 0 < 5 < [. The principal zero-dissipation limit result for
solutions to the IBVP (2.16-2.17-2.18) is as follows.

Theorem 2.5. Let T >0, 1 < p < 4, ug,vo € CZRT)NH2(R") and g1, g2 € C*(0,T) with 91(0) = uo(0) and
92(0) = v5(0). Consider the difference
w(z,t) = u(z,t) — vz, t)

between a solution u to the IBVP (2.16-2.17-2.18) with data ug and g1 and a solution v to the IBVP (2.19-
2.20-2.21) with data vo and g2. Then for any t € (0,7,

lwlZe + (1 + 6®)lwall3s + 0?lwee 32 < C1(8) [wolifs + (1 + 0®)lfwoal3s + 0 lwoss 3]

+ Co(t)? + Csllgr — g2llcr 0,1y + Callgr — 9211210,
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where wg = up — v, C1,Ca are functions of t and Cs,Cy are constants, all of which depend only on o, p, T,
luoll 2 flvoll a2, |g1llcqo,my and ||gzllcro, -

As a consequence, if {uf}u>0 and {g¥ }v>o0 are families of initial and boundary data for which ||ug —vol gz =
O(v) and ||g1 — g2llcr0,7y = O(¥?), as v — 0, then

[w]Zz+ (1 + ) lwelF2 + 0P [lwze |72 = O(?)
asv — 0.

Proof. The difference w = u — v satisfies equation (2.10) with initial value up — vg. Upon multiplying this
equation by w — wg,, integrating over {0, 00) and integrating by parts appropriately, there appears

d . ) . e
S (Il (4 @)l 2+ el 22) + 20 [ (2 4w )do (222)
0
= 21// (W — Wgy )Vgzdz — 2/ (W — Wag) (WP uy — vPug)dx (2.23)
0 0
—w3(0,t) — 2v(g1 — g2)ux(0,1) + (91 — g2)? (2.24)
—2(g1 — 92)twz(0,8) — 202 (g1 — g2)wz¢(0,1). (2.25)

The terms in line (2.23) may be estimated as in the proof of Theorem 2.3 and, due to the bounds for ||u|| g2
and ||v| g2 (see Proposition 2.4),

oo o0
2U/ (W — Wyy )Ugpda — 2/ (W — Wgz) (WPuy — vPv,)dz
0 0
oo
< () (wlde + (1 + o) fwallfs + 02 waall3s ) +20° / v, dz (2.26)
0

for 0 <t <T, where Cs5(t) is a function of ¢ with dependence only on p, «, |luo|l 2, l|vollz2, ll91llcro, ) and
ligallcr o,1)-

For 0 <t¢ < T, the temporal integrals in lines (2.24) and (2.25) are estimated as follows:
ot ¢
[ w20, < [ fun(ledr
0 0

1 1 t
< /0 a7 e, Pl oy < 2 /0 (wa(s )2 + Jwma (7 22) dr,
t
wy /0 (01(7) = 92(r)ue(0, 7)dT < T g1 — gallogormy el 2,
t
/0 (91(7) — g2(7))*d7 < Tligr — 9211207y

1 t
*2/0 (91 — 92)we(0,7)dr < 2/|g1 —gleCI(O,T)/O lwe || 12 [|Wae || L2dT
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, , 1t :
<o = el + 5 [ (hoslts + el
and

—202 /Ot(gl — g2)wz(0,t)d7T = 202 (g1 (0) — g2(0))w (0, 0)
—20%(g1(t) — g2(t))w.(0,1) + 20z2/ (91 — 95)wzdT
0

. . , a2 t . .
<2071 — g2llco,ry (lull 2 + vl ) + 7/0 (lwalZe + lweslZ2)dr.

Integrating equation (2.22) over [0,t) and combining the outcome with (2.26) and the last set of estimates
for the terms arising from lines (2.24) and (2.25), the inequality

t t o0
D(w)(t) < Co(t) / D(w)(r)dr + 202 / / V2, dadr
[¢] 0 0
+ (Crv + C8)llg1 — g2llcr 0,1y + Collgr — g2llZ1 0.1 (227)

obtains, where I'(w)(t) = [lw(-, t)||22 + (1 + &2)||wz (-, 1)[|22 + &®||wgs(-,t)||22. The desired result follows after
application of Gronwall’s inequality to (2.27).
3. V—INDEPENDENT H*-BOUNDS FOR THE GKDV-BURGERS EQUATION

This section focuses on the IVP of the GKdV-Burgers equation

Ut + uPUy — Vugg + Ugggy = 0, (x,t) e R x RT, (3.1)

u(z,0) = up(zx), z € R, (32)
where p > 1 and v > 0. The GKdV-Burgers equation and its dissipationless counterpart
Us + UPUL + Uggr = 0, (z,t) € R x RT, (3.3)

have been the subject of numerous investigations (¢f. Bona et al. [8], Kenig et al. [24,25]). There is an adequate
theory of well-posedness for both the IVP (3.1-3.2) and the IVP (3.3-3.2). The following results of Bona
et al. [8] and Kenig et al. [24] serve our purpose nicely.

Proposition 3.1. Let v > 0 and uo € H*(R) with s > 2.
(1): Ifp < 4, then there 1s a unique global solution u of (3.1-8.2) such that

u € C([0,T); H®), for everyT >0

and |u(-,t)|| g2 s unaformly bounded wn t.
(2): If p > 4, then there 15 a To = To(|luollzr) > 0 wndependent of v > 0, and a unique solution u €
C([0,To); H®). If ||uoll g s sufficrently small, Ty may be taken to be 400 and the solution s global.
Moreover, for t > 0, u(-,t) 15 an H*®(R)-function of its spatal variables and consequently u 1s a C*®-function

wn the domawn {(z,t): z € R, 0<t < Ty} where Ty = 0o 1n case (1) or wn case (2) of the data s small. In all
the above cases, the solution u depends continuously on ug wn the exhibited function classes.
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Proposition 3.2. Let p > 1 be an wnteger and s satisfy

s> 3/4, ifp=1;
s> 1/4, ifp=2;
s> 1/12, fp=3;

s>(p—-4)/(2p), p>4.

Then for any ug € H*(R) there exists T = T(||uolla=) > 0 and a unigque solution w of the IVP (3.8, 8.2)
satisfying

u € C([0,T); H®).
Whenp=1ands>1 orp <4 and s > 2 or when up 1s small enough, the solution u extends globally n
time. In any event, u depends continuously on ug wn the exhibited function classes.

Remark 2. The situation for KdV-Burgers is different from that arising with BBM-Burgers in the following
respect. At least for the pure initial-value problem, the BBM-Burgers equation is globally well-posed regardless
of how large p is. It is otherwise with the (generalized) KdV-Burgers equations where the indications are that
large solutions may blow up in finite time if p > 4 (see Bona et al. [8], [9] and Bona and Weissler [20]) even
when v > 0

However, bounds on solutions of (3.1-3.2) which do not depend upon v seems not to have been derived. It is
the goal of this section to provide such bounds. More precisely, it will be shown that for each positive integer
k, there is a constant Cy depending only on [lug|| g+ such that the solution u to the IVP (3.1-3.2) obeys

luC, Ol < Cr

forallt > 01if p =1 or 2 and for all ¢ in bounded intervals [0,7] if p > 3, where T' < T™*, the existence time
for the solution in question. The proof is made via an induction argument. Attention is concentrated on the
cases k =1 and k = 2. When k > 3, the argument simplifies because, with & = 2 in hand, it follows that u; is
bounded, independent of ¢ in the relevant interval.

Theorem 3.3. Let p > 1 and uo € H'(R). Then solutions u to the IVP (3.1-8.2) for the GKdV-Burgers
equation have the following properties.

(i): Ifp € (1,4), then there 1s a constant C1 depending only on p and |[uo|| g2 such that for any t € [0, o),
uC, Dl < Cr- (3.4)

(ii): If p > 4, suppose that € = ||ugl|gr s such that

4
, 4 4\ 7%
(1+pp)e®t% <1 and (1 + ppef) < <1 — 5) (5> ,

where pp = 2/(p+ 1)(p+2). Then for any t € [0,00), there 15 a constant Cy depending only on p and €
such that

lu(- ) 2 < Co.

Remark 3. These bounds are not only independent of v, but also uniform with respect to ¢, regardless of the
value of p.

Proof. For notational simplicity in the calculations here, references to the measures dz and dt are omitted when

we write integrals. First, recall that
oo t o0 oo
/ u? =j~21// / u? :/ u3. (3.5)
—oC 0 J— —co
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Multiplying (3.1} by u,, — u?*1/{p+ 1) and integrating on ® x [0.¢] leads to

/:x; 9 2 O Lo ot x5 5
u, o —————— uP™ +2v/ / U
e (P +2) /=x 0 Jox
o t o0
_ 2 p+2 2v / / p+1
= U UgreUP . 3.6
/_x e (p+1)( p+2)/ p+1Jo Jou (3:6)

This formula constitutes the base for our further estimates. Clearly, we have

/ W2 (w5, 8) < ) uC, 02 < uoll 7 # fua( £)] - (3.7)

—oC

To simplify the presentation, define

€= |luollgr and o(t) = sup |jua(:,$)||L2-
0<s<t

Integrating by parts and using (3.5) gives

umup+1—=21/// wPuZ < sup |lu(-,s HLx//
0<s<t

p + 1
<@ sup [lu(, )75 lus ()" < 4 sup Jlug(-,s)175
0<s<t 0<s<t (3.8)
Putting (3.6), (3.7) and (3.8) together yields
» - o
02(t) — 030'7(?5) + 2v / / uix < Cy (39)
J O —oc
for all t > 0, where
C3 = (1 + —2h—> 62+g and C4 = €+ ___?____62+p
(p+1)(p+2) (p+1)(p+2)

depend only on p and e. Formula (3.9) suggests a natural trichotomy.

(i) If p € [1,4), then £ < 2 and we can apply Lemma 3.4 below to inequality (3.9), whereafter the desired
result (3.4) follows.

(ii) When p = 4, we insist that € is such that

(1+~.—2_—.
p+1)p+2)

and then (3.8) implies o2(t) < (1 — C3)71Cy.

) 5 <1, e, C3<l,

(iii) For p > 4, if € is small enough that

4

4\ [ 4\
Cy<|1—~— —_— ,
! ( P) (PC:a)



ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES 285
and since o(t) is a continuous function of ¢, it follows from (3.8) that
o(t) < v(e), forallt>0,
where y(e) is the smallest positive root of
o2(t) — Cso % (t) = Cy.

The proof of Theorem 3.3 is thereby completed.

Lemma 3.4. Let P,Q and 3 < 2 be positive numbers. If Y > 0 satisfies
Y?-PYP <@,

then Y is bounded by
Y < max {(2P)2+ﬁ, \/QQ} .

A simple proof of this lemma is provided in [31].
We now proceed to the case £k = 2. A crucial step in establishing the uniform bound in this case is the

derivation of a particular integral identity valid for smooth solutions of (3.1-3.2). This result is the subject of
the next proposition.

Proposition 3.5. Let v > 0 (respectively, v = 0) and ug € H® with s > 2. Then the associated solution u of
the GKdV-Burgers (respectively, GKdV) equation with initial data ug satisfies the formula

[ [ -G o] as v [ [ dods = [ [u2,(0,0) - Sutor(e,0)| e
/ / {ﬁ ~1)(p— 2uiuP® + gPUiuz”"l] dzds

+§V/ / [2u2xu” - gp(p — 1)uiup“‘2] dzds,
0 J-oo (3.10)

for allt > 0 for which it exists.

Proof. We write [ [ for fg [°%. and omit dz and ds for simplicity of reading and writing. The proof of this
proposition involves two steps. The first step is to derive the identity

/_ xt)+2u// mmacsdacds+5p//umu wP 1
:/_Zuim(a:,O)Jr%p(p—1)(p_2)//u3up—s (3.11)

and the second is to establish that

/ [uim(:z:,t) —ufcu”(m,t)] +21///uim + 2p//uxuizup’l






