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ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES* **

JERRY L BONA 1 AND JIAHONG W U 2

Abstract. Evolution équations featuring nonlmeanty, dispersion and dissipation are considered hère
For classes of such équations that mclude the Korteweg-de Vries-Burgers équation and the BBM-
Burgers équation, the zero dissipation limit is studied Uniform bounds independent of the dissipation
coefficient are denved and zero dissipation limit results with optimal convergence rates are established
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1 INTRODUCTION

The incorporation of dissipative effects is often crucial m obtaimng good agreement between expérimental
observations and the prédiction of theoretical models describmg the propagation of waves in nonlmear dispersive
media (cf Bona et al [14] for an example from watei-wave theory) To take account of dissipative mechamsms,
a Burgers-type teim is often appended to nonlmeanty and dispersion m these models (cf Johnson [22,23] for
an early suggestion in this direction) Two such models are the well-known BBM-Burgers équation

ut + ux + uvux — uuxx — a2uxxt = 0 (11)

and the (generahzed) Korteweg-de Vnes-Burgers équation (GKdV-Burgers équation)

Ut-\-ux+ upux — vuxx + uxxx — 0, (1 2)

where u = u(x,t) is a real-valued function of two real variables x and t, p > 1 is an integer, v > 0 and a > 0
are real numbers Numerous numerical simulations and analytical studies have been carried out to détermine
the effect of such a term m these models (cf [4,7,8,12,13,15,16,21,27-29]) Laboratory studies show (1 1) with
p ~ 1 and a suitably chosen value of v has good prédictive power m cases where nonlmear effects are not too
stiong (eg the Stokes number is not too large m a water-wave context [14])

It is the purpose of this aiticle to mvestigate theoietically aspects of the dissipative effects mheient m these
two models when u > 0 Considération will also be given to a more gênerai class of models of the form

ut + (P(u))x + vMu - (Lu)x = 0, (1 3)
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where M and L are Fourier multiplier operators with non-negative symbols and F is a polynomiai. say

with dk £ M, k = 1,2, ••• ,p (see Bona [5] and Dix [21]). Interest will mainly focus on the pure initial-value
problem (IVP) for these équations wherein

u(x, 0) = uo(x), is specified for x G l ;

however, the initial- and boundary-value problem (IBVP)

u(x: 0) = uo(x), for x € R+,

u(0,t) = g(t), for t E M+,

for the BBM-Burgers équation will also be examined. In this article, particular interest is directed toward the
behavior of solutions in the zero dissipation limits.

In the limit as v tends to zero, équations (1.1, 1.2) and (1.3) formally reduce to the BBM équation, the
GKdV équation and a class of équations of KdV-type in generalized form,

u± + ux + vPux - uxxt = 0,

ut + ux+ upux + uxxx = 0,

ut + (P(u))x - (Lu)x = 0,

respectively. This suggests comparing solutions u to one of these équations with dissipation to the solution v
of the corresponding équation without dissipation. It is expected that for varions spatial norms || • ||,

\\u(;t)~v(;t)\\^0 (1.4)

as v —• ö, uniformly for t > U. Theory will be developed showing (1.4) is valid in certain circumstances.
Moreover, we will be able to détermine the rate at which \\u(-,t) — v(-}t)\\ approaches zero. A crucial step in
proving such convergence results is to obtain ^—independent bounds on solutions to the dissipative équations
and very often these are not available in the literature. Précise statements are provided presently.

The paper is organized as follows. Section 2 contains the relatively straight forward analysis of the zero-
dissipation limits for the IVP and the IBVP for the BBM-Burgers équation. In Section 3 we establish v-
independent bounds on solutions to the GKdV-Burgers équation in Hk for all integers k > 0 (the Hilbert space
Hk = Hk(R) is the L2-based Sobolev class of functions whose derivatives to order k are all square integrable).
This result is interest ing in its own right and crucial in obtaining the zero-dissipation limit results for the GKdV-
Burgers équation in Section 4. The relation (1.4) is determined to hold in || • \\Hk and the convergence is shown to
be O[y) as v —> 0. Section 5 is devoted to the équations of gênerai type depicted in (1.3). Zero-dissipation limit
theory in this section relies upon growth conditions on the symbols of the dispersion and dissipation operators
L and M, respectively.

2. ZERO-DISSIPATION LIMIT FOR THE BBM-BURGERS ÉQUATION

This section is divided into two parts. The first part is devoted to the zero-dissipation limit for the IVP for
the BBM-Burgers équation while the second part deals with the zero-dissipation limit for the associated IBVP.
Consider first the IVP

ut + ux + uvux - vuxx - o?uxxt - 0, (x,t) e R x IR+, (2.1)
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u(x, 0) = uo(x), x G M, (2.2)

where p > 1 is an integer, v > 0 and a > 0. As noted before. upon setting v = 0, équation (2.1) formally
reduces to

v>t + ux + upux - a2wxxt = 0. (2.3)

There is an adequate theory of well-posedness for the IVP (2.1-2.2) and the IVP (2.2-2.3) (cf. Bona et al [2,3]).
For our purpose, it suffices to have the following proposition, in which Cb(I, X) dénotes the bounded continuous
mappings u: ƒ —> X, J = [0,T] C M+, with its usual norm.

Proposition 2.1. Let uQ G Hs with s > 1. Then tfzere exists a unique solution u to the IVP (2.1-2.2) such
that, for each T > 0,

, oo); ̂ x ) n C([0,T]; ̂ 5 ) and 0É*u e C([0, T]\H8)

for each k > 0. Furthermore, for each T > 0 and /c > 0? i/ie solution map from u0 to u is analytic from Hs to
Ck([0,T]-Hs).

The preceding results hold for the IVP (2.2~2.3)7 but in this case d^u G C([0,T]; HS+1) for each k > 0 and
T>0.

We shall use u and v to dénote the solution to the IVP (2.1-2.2) and the IVP (2.2-2.3), with initial data u0

and VQ, respectively. The following lemma provides ^—independent bounds and other helpful inequalities for a
solution u to the IVP (2.1 -2.2).

Lemma 2.2. Assume that p > 1 and s > 1.
(i): Ifuisa solution of the IVP (2.1-2.2) with uQ G Hs, then for ail t>0}

f't rOQ

(2.4)

uxx G L2(R x M+), and \\u(-}t)\\L^ < C(a)\\uo\\Hi

where C(a) = max{a2,a~2}.
(ii): If v is a solution of the IVP (2.2-2.3) with initial data vo G Hs, then

, \\v(;t)h- < C(a)\\vo\\m (2.5)

and} if s > 2,

/ [vlfat) + a2v2
xx(x,t))dx < e " ^ - * / (v%x(x)+a2v%xx(x))dx (2.6)

ƒ \\vx{',s)\\Loods<2V2a\\vo\\1^vo\\H2 J e 1 ^ * - 1 J • (2.7)

Remark 1. In the proof that follows, and frequently in the rest of the paper, intermediate calculations are
made that use regularity in excess of that assumed on the data and hence in excess of that which the solution
possesses. The final inequalities do not suffer from this defect, however. Such calculations are easy to justify in
the présence of a strong continuous dependence result. Simply regularize the initial data, make the calculation
securely for the resulting smooth solution, and then in the final inequality pass to the limit as the regularization
weakens to the identity. This standard procedure underlies much of the theory developed here, but we will not
constantly remind the reader of its invocation.
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Proof The formula (2.4) is obtained by multiplying (2.1) by u, integrating over E x [0,t] and integrating by
parts appropriately. To show that uxx G L2(R x M+), multiply (2.1) by uxx and integrate. To finish (i), it
suffices to remark that

The proof of (2.5) is similar. To establish (2.6), multiply (2.3) by vxx and integrate over M to obtain

d
/ (vl(xyt)+a2vlx(x,t))dx = 2 / (vxvxxv

p)(x,t)dx
J-oo 7-oo

{v2
x{x,t) + a2v2

xx{x,t))àx, (2.8)

which leads to (2.6) after intégration over [0, t\. The inequality (2.7) follows by combining (2.6) and the estimâtes

\\vx('.s)\\Loc < \/2||vx(-,s)||L2||va;a;(-,s)||£,2 < C(a)\\vö\\Hi\\vxx(',s)\\L27

where the constants depending on a may be different from line to line.

In the following theorem, explicit estimâtes are established for the différence between a solution u to the IVP
(2.1-2.2) and v to the IVP (2.3-2.2). As a conséquence of these estimâtes, u converges to v with the sharp rate
of order v if the initial différence is maintained at order v,

Theorem 2.3. Assume that p > 1 and s > 2. Let u be the solution of the IVP (2.1-2.2) with uo E Hs and let
v be the solution of the IVP (2.3-2.2) with initial data VQ e Hs. Then the différence w = u — v satisfies the
inequality

a2)\\wx\\
2

L2 + a2\\wxx\\l2 < eA& {\\wo\\
2

L2 + (1 + a 2 ) ^ ! ! ! , + a2\\w0xx\\l2)
(2 9)

for all t > 0; where WQ = UQ — v$,

and

B(t) = aKll^lNll^ f e^r-* _ i j .

If we consider a one-parameter family {UQ}1/>O of initial data such that \\UQ — ̂ o||#2 = O(u) as v —> 0 (in
particular if UQ = VQ), then for any T > 0 and t <T

M;t)\\h + (1 + a2)\\wx(;t)\\
2
L2 +a2\\wxx(;t)\\l* = 0{v2)

as v —> 0.

Proof. The différence w satisfies

i»t + ^x + (upux - vpvx) - vuxx - a2yjxxt = 0. (2 10)
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Multiplying (2.10) by 2(w — wxx) and integrating over R yields

i /'OO

— (||w|li2 + (1 + a;2)ll^;x|||2 + ce2||^xx||L2) + 2^ / (w£ +w%x)dx
Ut J — oo

/'OO />OO

= 2v l (w- wxx)vxxdx - 2 / (to - wxx)((u
pwx + (up - vp)vx)dx. (2.11)

J—OO J—OO

The first term on the right-hand side of (2.11) may be bounded by

/"OO

/ v2
x

J — oo
dx.

Using the results of Lemma 2.2, there obtains

/ w(up — vp)vxdx •
J —oo

< h\no\\P
m H w2dx+ h\uo\\PHi H w*dx>

z J— oo z J ~oo

J — oo

wupwxdx

rOO

/ wxx(u
p-vp)vxdx

J— oo

and

wxxu
pwxdx

These estimâtes are combined to give

< iho\\p
m r ^dx+iiitioii^

z J-oo z J-

-Y(t) < A(t)Y(t) + B(t)

where

Y(t) = IK-,t)lli* a2
\wx(;t)\\h + <X2\\WXX\\2

L2,

=max{l,a-2}(l

and

B(t)=2v2 jv2
xx{x,t)dx.

By Gronwall's inequality applied to (2.12), there is derived the upper bound

Y(t) < (Y(0) + J* fî(s)ds) e/o A^dT

(2.12)

(2.13)

(2.14)

(2.15)
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which is (2.9) after reintrodiicing Y, A and B as in (2.13, 2.14) and (2,15), respectively, and usirig the bounds
in Lemma 2.2.

Xext. attention is given to the zcro-dissipation limit of solutions to the initial- and boundary-value problem
(IBVP)

ut + ux + upux - vuxx - a2uxxt = 0, (x,t) € M+ x M+
; (2.16)

u(0:t)=gi(t): t e l + , (2.17)

u(xt0) = uö{x), x e M+, (2.18)

where p > 1 is an integer, v > 0 and a > 0 and the consistency condition gi(0) = UQ(Q) is always assumed.
Our approach is to compare the solution u of the IBVP (2.16-2.17-2.18) with the solution v to the IBVP for
the BBM-equation

vt +vx^ vvvx - o?vxxt = 0, (x, t )GR + xR +
; (2.19)

v(Q,t) = g2(t), t 6 l + , (2.20)

v{x,0)=vo(x), ï G l + , (2.21)

in which 52(0) = ̂ o(O).

The well-posedness of both the IBVP (2.16-2.17-2.18) and the IBVP (2.19-2.17-2.18) has been established
by Bona. Bryant and Luo (cf. [6,10]). The following resuit suffices for our purposes.

Proposition 2.4. Let T > 0, 1 < p < A} u0 G C^(M+) n H2(R+) and gx e C^O^T) with #i(0) = uo(O)
(respectively} v0 e C6

2(M+) fl iJ2(M+) and g2 e C^O.T) with g2(0) = vQ(0)). Then the IBVP (2.16-2A7-
2.18) (respectively, the IBVP (2J9-2.20-2.21)) has a unique solution u such that, for any finite T > 0} u €
5y'1(M+) H C([0,T);i72(E+)) (respectively, v € By'1(K+) n C([0,T); iI2(R+)). Furthermore, the bound for
II w II H2 is independent of v for small v.

In Proposition 2.4 £>^(IR+) stands for the functions u defmed on M+ x [0,T] such that dxd
3

tu are continuous
and bounded over M+ x [0, T] for 0 < i < k and 0 < j < l. The principal zero-dissipation limit resuit for
solutions to the IBVP (2.16-2.17-2.18) is as follows.

Theorem 2.5. Let T > 0, 1 < p < 4, uQ}v0 G Cf(M+) H H2{R+) andgug2 e C^OjT) with g^O) = uQ(0) and
g2(0) — ̂ o(O). Consider the différence

w(x, t) — u(x, t) — v(x, t)

between a solution u to the IBVP (2.16-2.17-2.18) with data UQ and gi and a solution v to the IBVP (2.19-
2.20-2.21) with data v0 and g2. Then for any t G [0,T],

\\w\\2
L, + (1 + a 2) | |^ | | i 2 + a 2 |K , | | 2

2 < C^t) [\\wö\\
2

L2 + (1 + a2)\\wox\\h + a2\\w0xx\\h}

-h C2{t)v2 + C3||^l - ^l l 2
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where WQ = UO — VQ, 61,62 are functions of t and C3.C4 are constants, ail of which depend only on a7 p, T,

As a conséquence, if {UQ}V>Q and {si}i»o are families of initial and boundary data f or which \\UQ — VQ\\H2 =
0{u) and \\gi - 92\\c1(otT) = 0{v2), as v —> 0, then

\H\h + (i + ®2)\Mh + a2 | |^|||2 = o{u2)

as v —• 0 .

Proof The différence w = u — v satisfies équation (2.10) with initial value UQ — VQ. Upon multiplying this
équation by w — wxx, integrating over [0. oc) and integrating by parts appropriately, there appears

J /*0O

^(\\w\\l, + (l + a2)\\wxfL2+a2\\wxx\\
2

L2)+2iy (w2
x + w2

xx)àx (2.22)

/•OO rOQ

= 2u (w - wxx)vxxdx - 2 / (w - wxx){upux - vpvx)dx (2.23)
Jo Jo

-92)ux(0,t) + (gi-g2)
2 (2.24)

- 2(51 " 92)tWx(0,t) - 2a2(9l - g2)wxt(0,t). (2.25)

The terms in line (2.23) may be estimated as in the proof of Theorem 2.3 and, due to the bounds for | |u||#2

and \\v\\H2 (see Proposition 2.4),

/•OO /»OO

2v / (w - wxx)vxxdx - 2 / (w — wxx)(u
pux - vpvx)dx

Jo Jo

< C5(t)[\\w\\2
L2 + (1 + a 2 ) ! ) ^ ! ! ^ + a2\\wxx\\

2
L2j + 2v2 / v2

xxdx (2.26)

for 0 < t < T , where C$(t) is a function of t with dependence only on p , a , H^oll//2; II^OIIH"2* H^I I IC^O.T) a n d

For 0 < t < T, the temporal intégrais in lines (2.24) and (2.25) are estimated as follows:

/ ™2(0,T)dT< / K;(-,T)||loodT
JO JO

< / \\wx(;r)\\L2\\wxx(^r)\\L,dr<l [ (\\wx(-, r ) | | 2
2 + | K , ( - , r ) | | i a ) dr ;

Jo l Jo

-2i/ / (51 (r) - S 2 ( T ) K ( 0 , r ) d r < 2i^T||5i
JÛ

/ (5i W - P2(r))
2dr < T\\9l -

J 0

~2 / (si -£2)^(0,r)dr < 2||^i -^HCHO.T) / [kxI
JO JO



282 J L BONA AND J WU

f*

and

1 f
< \\9i-g2\\2ci{0)T) + ö / (IKIIi* + IksxlliOdr,

-2a 2 / (9i-g2)wxt{0,t)dT = 2a2(g1(Q) - g2(0))wx(0,0)
Jo

ft
-2a2{9l(t) - g2(t))wx(0,t) + 2a2 / (g[ ~ g'2)wxdr

Jo

T)(Nliï* + \\V\\H2) + ̂  f (|K||£a + IkxxIl

Intégrât ing équation (2.22) over [0,t) and combining the outcome with (2.26) and the last set of estimâtes
for the terms arising from lines (2.24) and (2.25), the inequality

V(w)(t) < Ce(t) / T(w)(r)dr + 2u2 / / v2
xxdxdr

Jo Jo Jo
Cs)\\9i - 92\\CHO)T) + C9||5i - ^ilci(o,T) (2 27)

obtains, where T(w)(t) = H^O,Ollia + (1 + a2)ll™x(*,£)|||2 + «2||^xx(-;0lli2- T n e desired result follows after
application of Gronwall's inequality to (2.27).

3. ^-INDEPENDENT i^fc-BOUNDS FOR THE G K D V - B U R G E R S EQUATION

This section focuses on the IVP of the G KdV-Burgers équation

ut + upux - vuxx -f uxxx = 0, (z, t ) e M x R + , (3.1)

u(xi0)=u0(x), xe l , (3 2)

where p > 1 and v > 0. The GKdV-Burgers équation and its dissipationless counterpart

ut + u ^ s + uxxx - 0, (x, f ) e l x R+, (3.3)

have been the subject of numerous investigations {cf. Bona et al. [8], Kenig et al. [24,25]). There is an adequate
theory of well-posedness for both the IVP (3.1-3.2) and the IVP (3.3-3.2). The following results of Bona
et al [8] and Kenig et al. [24] serve our purpose nicely.

Proposition 3.1. Let v > 0 and u0 € HS(R) with s>2.
(1): If p < 4, then there is a unique global solution u of (3.1-3.2) such that

u e C([Q,T}]HS), for every T > 0

and \\u(-,t)\\ffi is umformly bounded m t.
(2): If p > 4, then there is a TQ = Todlitolln1) > 0 independent of v > 0; and a unique solution u €

C([0,TQ); HS). If \\UO\\H1 %S sufficiently small, TQ may be taken to be +oo and the solution is global.
Moreover, for t > 0, u(-,t) is an H'°°(R)-function of its spatial variables and consequently u is a C°°-function
m the domain { (x , t ) : iER, 0 < t < To} where To = oc m case (1) or m case (2) if the data is small. In ail
the above cases, the solution u dépends contmuously on UQ %n the exhibüed function classes.
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Proposition 3.2. Let p > 1 be an integer and s satisfy

s > 3 / 4 , tfp = l;

s > 1/12, ifp = 3;

T/ien /or any 1£Q G Jïs(M) t/iere exîste T = T(||UO||JÏ3) > 0 and a unique solution u of the IVP (3,3, 3.2)
sattsfymg

ueC([0,T\;H').
When p = 1 and s > 1 or p < 4 and s > 2 or when uo is small enough, the solution u extends globally m

Urne. In any event, u dépends contmuously on uo %n the exhibited function classes.

Remark 2. The situation for KdV-Burgers is different from that arising with BBM-Burgers in the following
respect. At least for the pure initial-value problem, the BBM-Burgers équation is globally well-posed regardless
of how large p is. It is otherwise with the (generalized) KdV-Burgers équations where the indications are that
large solutions may blow up in finite time if p > 4 (see Bona et al. [8], [9] and Bona and Weissler [20]) even
when v > 0

However, bounds on solutions of (3.1-3.2) which do not depend upon v seems not to have been derived. It is
the goal of this section to provide such bounds. More precisely, it will be shown that for each positive integer
&, there is a constant Ck depending only on ||uo||i/fc such that the solution u to the IVP (3.1-3.2) obeys

for allt > 0 if p = 1 or 2 and for ail t m bounded intervais [0, T] if p > 3, where T < T*, the existence time
for the solution in question. The proof is made via an induction argument. Attention is concentrated on the
cases k = 1 and k = 2. When k > 3, the argument simplifies because, with k = 2 in hand, it follows that ux is
boundedj independent of t in the relevant interval.

Theorem 3.3. Let p > 1 and u0 € #X(]R). Then solutions u to the IVP (3.1-3.2) for the GKdV-Burgers
équation have the following properttes.

(i): If p G [1,4), then there is a constant C\ depending only on p and \\UQ\\HI such that for any t G [0, oo),

K-,t)ll#i<Ci. (3.4)

(ii): If p > 4, suppose that e = ||uo||ffi ts such that

and €2(1
' ' ' V V) \V

where jip = 2/(p + l)(p + 2). Tften /or any t G [0, oo), £/iere is a constant C^ depending only on p and e
such that

Remark 3. These bounds are not only independent of vy but also uniform with respect to t, regardless of the
value of p.

Proof. For notational simplicity in the calculations hère, références to the measures dx and dt are omitted when
we write intégrais. First, recall that

/•OO pt pOO pOO

/ u2 + 2u u2
x= u2

0. (3.5)
J—oo JQ J— oo J— oo
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Multiplying (3.1) by uxx •+- up+1/(p-\-1) and integrating on ]& x [OA] leads to

ft fiOC

^xx

/•OO cy ft pO

f <+2 ~vh
J-oc P+LJo J-

/O J-oo

for all t > ü, where

This formula constitutes the base for our further estimâtes. Clearly. we have

To simplify the présentation, define

e = II^OIIH1 an<3 <j(t) = sup ||ua;(-, <S)||L2-
0<s<t

Integrating by parts and using (3.5) gives

2v f1 f°° _+1 o /•* f°° v 2 .. . X11_ /£ r°° 27 / / w r a r T = lv l ƒ upux< sup IhH^sJlIjT^ ux

< € S U p | | w ( - , s ) | | ? 2 | | t i x ( - , 5 ) | | ^ 2 < e + ï ï S U p | | l i a : ( I ï S)\\T2 -

Putting (3.6), (3.7) and (3.8) together yields

cr2(t) - C3a
Ji (£) + 2v I I u2

xx< C4 (3.9)
Jö i-00

depend only on p and e. Formula (3.9) suggests a natural trichotomy.

(i) If p G [1,4), then | < 2 and we can apply Lemma 3.4 below to inequality (3.9), whereafter the desired
result (3.4) follows.

(ii) When p = 4, we insist that e is sucli that

and then (3.8) implies a2(t) < (1 - C s ) " 3 ^ .

(iii) For p > 4, if e is small enough that
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and since a(t) is a continuous function of ty it follows from (3.8) that

a(t) < 7(5), for all t > 0,

where j(e) is the smallest positive root of

The proof of Theorem 3.3 is thereby completed.

Lemma 3.4. Let P, Q and f5 < 2 be positive numbers. IfY>0 satisfies

Y2 - PYP < Q,

then Y is bounded by

Y :

A simple proof of this lemma is provided in [31].

We now proceed to the case k = 2. A crucial step in establishing the uniform bound in this case is the
dérivation of a particular intégral identity valid for smooth solutions of (3.1-3.2). This result is the subject of
the next proposition.

Proposition 3.5. Let v > 0 (respectively, u = 0) and u0 € Hs with s > 2. Then the associated solution u of
the GKdV-Burgers (respectively, GKdV) équation with initial data UQ satisfies the formula

f°° r ^ i c% r°° r°° r ^ i
/ ( " > • O O n - i ^ \ II O ƒ O O O • \ I

/ ?/ (v i\ ?; i j ^ / r / l HT 4- 97̂  / / 11 HTHQ — / 7/ (r (\\ -i/^i/^fr Hl HT
ƒ UinrpyJU. o) Ui—Lu \JU, vi U.U/ [ Als f I (X™ r T Ui tU.ö — / tt™„VX, U} _ (JU^UJ I X , U I KXJU

j-00 L ö j Jo J-00 J-00 L ó J

dxds,

for allt>0 for which it exists.

Proof. We write ƒ ƒ for JQ / ^ and omit da; and ds for simplicity of reading and writing. The proof of this
proposition involves two steps. The first step is to dérive the identity

ƒ u2
xx(x, t) + 2i/ ƒ ƒ u2

xx:c(x, s)dxds + 5PJJ u^vF'1

= J°° v*x{x,0) + \p{p- l)(p- 2) ƒ ƒ ulu^3 (3.11)

and the second is to establish that

[Uxx\XiZ) ~ UxU \Xil)\ ^ LV I I Uxxx^Z'P I I ux
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p ( p - l ) ( p - 2 ) t i | t 4 P - 3 + p u 3 t i 2 p - l

+ v f J \^ulxvP - |p(p - l ) n ^ - 2 ] , (3.12)

provided u is the solution of (3.1-3.2) with initial data UQ.

The purpose of deriving these two identities is to use them jointly, but at the same time eliminate the troublesome
term

J Juxu
2
xxu

p-\
after which (3.10) follows easily.

For (3.11), differentiate the GKdV-Burgers équation with respect to x. multiply the result by uxxx and
integrate over (—oo, oo) x [0,£], so coming to

/»OO /* P /'OO /» /•

/ ^ (a ; ,*) + 2i/ / / ^ x a ; = ƒ ^ x (x ,0 ) + 2 ƒ ƒ nxxx(ti%x)x. (3.13)

The last term may be treated as follows:

/ / uxxx(u
pux)x = uxxx{upuxx + pvP^ul)

— - [ f(v2 ) iip -n f fv (vp~xv2)~2JJ(uxx)xu pjjuxx[u ux)x

= -y ƒ fu^u^-pip-l) I Juluxxu
p-"

5p f f 2 — 1 1 f f 5 -3

2 j j x xx 4 y y
Equation (3.11) follows from (3.13) and (3.14).

For (3.12), multiply the GKdV-Burgers équation by TXxzxrr + {upux)x and integrate over (-00,00) x [0,t].
After suitable intégrations by parts, we obtain

ƒ «|a(x, t) + 2i/ ƒ ƒ «Lx + ƒ f(

Jxxu
2

xu
p-1. (3.15)

In (3.15), the two terms

ƒ / Uxxul^"1 and / / (upux)xut

need further elucidation. First of all, note that

ƒ Juxxu
2

xuV = \f f{ul)xuxu^ = -l-J JuxxulvP-^ -P-1J Juin?-2,


