
ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

JEAN-YVES CHEMIN

BENOÎT DESJARDINS

ISABELLE GALLAGHER

EMMANUEL GRENIER
Fluids with anisotropic viscosity
ESAIM: Modélisation mathématique et analyse numérique, tome 34, no 2 (2000),
p. 315-335
<http://www.numdam.org/item?id=M2AN_2000__34_2_315_0>

© SMAI, EDP Sciences, 2000, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_2000__34_2_315_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Mathematical Modelling and Numerical Analysis M2AN, Vol. 34, N° 2, 2000, pp. 315-335
Modélisation Mathématique et Analyse Numérique

FLUIDS WITH ANISOTROPIC VISCOSITY*

JEAN-YVES CHEMIN1, BENOÎT DESJARDINS2, ISABELLE GALLAGHER3 AND EMMANUEL
GRENIER4

Abstract. Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity.
We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than
usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive
estimâtes which allow us to prove global wellposedness for fast enough rotation.
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INTRODUCTION

The aim of this paper is the study of the following System

Î
dtV + v-Vv- vAhv - vvd\v = -Vp 'm R + x M3

divv = 0
v\t=o = ^o ,

where A^ dénotes the horizontal Laplacian, ie. the operator d^ + <9̂ 2. The constants v > 0 and uv > 0
represent respectively the horizontal and vertical viscosities. Obviously, this System is locally well posed when
the initial data VQ belongs to a Sobolev space iï2+*7(R3) for any positive real number 77 simply because the
energy estimâtes are better than the ones for Euler (Le. v — vv = 0). On the other hand, it is well known that
if v and vv are positive, and if vo is only in L2(R3), then a global weak solution exists (that is Leray's theorem,
see [16]). Finally, if VQ belongs to the homogeneous Sobolev space H* (M3), then a unique local solution exists
(that is Pujita and Kato's theorem, see [10]). Moreover, if ||uo|| • i is small enough with respect to min{z/, ^ v } ,

then the system is globally well posed. Let us note that the homogeneous space H * (M3) is well adapted to the
Navier-Stokes System, in the sensé that it is invariant under the scaling of the équation: if v is a solution of

the Navier-Stokes équation, with data t>o, then the same goes for v\ defined by v\(t,x) = Xv(X2ty\x), with
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data vot\(x) = XVQ(XX); it is easy to see that

What we want to investigate hère is the case when vv is 0 or converges to 0. We want to prove existence and
if possible uniqueness results as close as possible to the case when the two viscosities are positive and fixed.

Let us begin by saying something about the motivation of this problem. It is well known since a series a work
devoted to Ekman boundary layers for rotating fluids (see for instance [13], [7] and [8]) that it makes sensé to
consider anisotropic viscosities and more precisely viscosities of the type

That is obviously a particular case of the System (NSh) stated at the beginning of this introduction.

Consider ing the anisotropy of the problem, we shall have to use spaces of functions that take int o account that
anisotropy. All we shall do hère is strongly related to energy estimâtes, so the tooi will be anisotropic Sobolev
spaces. Such spaces have been introduced by D. Iftimie in [15] for the study of incompressible Navier-Stokes
équations in thin domains.

Let us recall the définition of those spaces. It requires an anisotropic dyadic décomposition of the Fourier
space, so let us start by recalling the définition of the following operators of localization in Fourier space:

d e f ^ _ X / . / o _ 7 - | ^ | ^ for . ^ z

d e f ^ _ w / — * | £ 1 ) 2 ) for k e N

ai n ing

Av_xa t f r

A\a d= 0 for K - 2 ,

where Ta and a dénote the Fourier transform of any function a. The functions ip and ip are smooth, compactly
supported functions, with support respectively in a fixed ring of M far from the origin, and in a fixed bail

the origin and such that

Vt e R \ {0} , ^2 v(2~jt) = 1 a n d

We refer to [3] for a précise construction of an isotropic décomposition of the Fourier space; let us note that
there exists an integer No such that if \j — j ' \ > NOy then supp (p(2~j-) n supp ip(2~j' •) = 0.

Let us remark that we consider a homogeneous décomposition in the horizontal variable and an inhomoge-
neous décomposition in the vertical variable. The associate Sobolev spaces are defined as follows.

Définition 1. Let s and sf be two real numbers and a a tempered distribution. Let

The space Hs>s' is the cîosure ofV(Rs) for the above (semi-)norm.

Let us remark that, as usual when homogeneous Sobolev spaces are involved, Hs>s' is a Hubert space if and
only if s < 1. Spaces of this type have been used by J. Rauch and M. Reed in [18] and by M. Sablé-Tougeron
in [19].

Let us state the three main theorems of this paper.
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Theorem 2 (Existence). Let so > 1/2 be a real number, and let VQ 6 H°iS°. Then a positive time T and a
solution v of (NSh) defined on [0,T] x R3 exist such that

Furthermore, there exists a constant c such that if ||VO||HO'SO is less than cv, then we can choose T — +00.

Theorem 3 (Uniqueness). Let SQ and s be two real numbers, greater respectively than 1/2 and 3/2, and let
be an initial data in H0)S. Then at most one solution v of (NSh) exists in the space

V KZ IJ {M, , rt ) I 1 Ju {M. ,11 J.

Let us dénote by T* the maximal time of existence; if T* is finüe, then

•T*
i,andt = +00.

Those statements deserve a few comments. The initial data in Theorem 2 have only L2 regularity in the
horizontal variable, and H^+r} in the vertical variable; for positive viscosities, it is proved by D. Iftimie in [15]
that the problem is well posed. Hère, with that regularity (which is very close to the scaling of the équation),
we obtain short time existence for large data and global existence for small data as in Pujita-Kato's Theorem.
Uniqueness requires one additional vertical derivative. That cornes from the fact that the lack of vertical
viscosity prevents us from gaining vertical regularity.

The third resuit of this paper concerns the rotating fluid équations, obtained from (NSh) by adding the

Coriolis force -v x e3, where es = (0,0,1). Hère e > 0 represents the Rossby number; we refer to [12] and [17]

for a physical interprétation of that System. Note that the skew-symmetry of the operator Lv = v x es
implies that Theorems 2 and 3 hold for the rotating fluid équations: their proof only involves energy estimâtes.
Moreover, the rotation induces a dispersive effect which leads to the following resuit.

Theorem 4 (Rotating fluids). Let v0 be an initial data in H°>s with s strictly greater than 3/2. Let v > 0
and vv > 0 be two real numbers. Then a positive real number EQ exists, depending only on v and v0, such that,
for any e < 6Q, the System

dtv + v-Vv — vAhV — vvd\v + -v x 63 = — Vp
div v = 0
v\t=o = ^0 ,

has a unique global solution in the space L°°([0,r]; iJ°'s) n L2([0,T]; H1*8).

Let us notice that this global regularity resuit is différent from those proved in the case of periodic boundary
conditions (see for instance [1] and [11] in those cases, the global regularity is due to non résonance conditions).

The structure of the paper is the following:
• the first section is devoted to some basic properties of the spaces JFP'S';
• the second section, the core of the proof of Theorems 2 and 3, is devoted to the proof of an energy estimate

in anisotropic Sobolev spaces for the convective term v - V. The fact that the vector field v is divergence
free will allow us to avoid bad terms containing d%v which are not compensated by viscosity;

• the third section is nothing but an application of that energy estimate through classical contraction
arguments, in order to prove Theorems 2 and 3;

• the fourth section consists in showing a dispersive effect for rotating fluids, as pointed out in [6], and
applying it in this context in order to prove Theorem 4.
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1. ALGEBRAIC PROPERTIES OF SPACES HSi$f

Before stating the theorem we want to prove, let us give a few properties concerning those spaces, which we
shall use throughout the study. The main results are essentially contained in [18], in [19] and in [15]. They
concern product rules in the spaces Hs>s' ; let us start by recalling the classical product rules in isotropic Sobolev
spaces: if a and b are two tempered distributions, then for any d > 1,

Vs,t< - , s + t>0, l|a&||H.+t_$(Rd) <Cs,t\\a\\H.m\\b\\Htm, (1.1)

defwhere the Hs spaces are the usual homogeneous Sobolev spaces, defmed by the norm H^H^ = || | • \s \u{-)\ ||L2 -
Furthermore, in the final section, we shall be working with bidimensional functions as well as tridimensional

functions, and in particular taking the product of such functions. We shall be in need of the following result,
whose proof can be found in [11] (in the case of periodic boundary conditions, but it is identical in the case of
the whole space):

V5,t < 1, s + £ > 0, \\ab\\Hs+t^{RZ) < Csj\\a\\Hs{m2)\\b\\Ht{R3y (1.2)

The same results hold for inhomogeneous Sobolev spaces.
Now we shall prove the following product rule in our anisotropic Sobolev spaces.

Lemma 1. Let a and a1 be two real numbers, smaller than 1, such that a -f a1 > 0, and let so > 1/2 and s be
such that s + so > 0; a constant C exists such that the following holds. Let a and b be two tempered distributions.
Then

Proof of the lemma. By définition of iJa ' s , we have

so we can write

\\a\\H^ = Ip'^HA^all^^^^^))^ . (1.3)

Then we just have to write the paraproduct algorithm of J.-M. Bony (see [2]), in the vertical direction, which
reads

At(ab) = &%(TZb + T£a + Rv{a, b)),

with

Tvb%ïj2sv
k,aAl,b and IP{a9b)^Y, ^ AfcaAJ^b.

fc' fc' j € { - l , 0 , l }

Let us state the following lemma, whose proof is obvious.

Lemma 2. For any s > 1/2 and any c r G l , a constant C exists such that for any function a,
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Then we have, by the bidimensional product rules recalled in (1.1),

where Ck G ̂ 2(Z), according to Lemma 2. Similarly we have

Then Bernstein's inequality yields

This implies that

and Lemma 1 is proved. D

2. ANISOTROPIC ENERGY ESTIMATES

We shall prove the following lemma, which is the core of the proof of Theorem 2.

Lemma 3. For any real numbers so > 1/2 and s > SQ, a constant C exists such that for any vector fields a
and b} with a divergence free,

with

Proof of the lemma. Let us deflne

F£d=Av
k(a

h.Vhb) and F£ d= Av
k(a

sd3b),

The terms (F^\bk)L2 and (F%\bk) are estimated in two different ways. The reason why is that the term F%
involves only horizontal dérivât ives which can be compensated by the horizontal viscosity as in the case of the
usual Navier-Stokes system.
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Let us start by proving the resuit for Fj}. We have, using similar computations to those leading to Lemma 1,

, ^ ) | |

Finally, we have

so the resuit is proved for the term (FJ}\bk)L2. To estimate the term (F%\bk)L2i let us flrst use J.-M. Bony's
décomposition in the vertical variable: we can write

Al(asdsb) = F^+FZ>2 with

F^1 Hf A^ Yl SZ,+2(d3b)At,a* and
fc'>fc-iV0

„vt2 def AV v ^ Qv

We cieariy have

and Bernstein's inequality, along with bidimensional product rules recalled in (1.1), yields

fe'>fc—JV0

But it is clear that

so
l l ^ W . ^ J t . - , , ^ 0 2 1 E 2'°'(->||Afe,a

3||L2(R3)||6||„è,s.
k'>k-No

Here we are going to use in a crucial way the fact that o is divergence free: we have

d3a
3 = -divhah,

So, we infer that
3 < C2-k'\\Av

k,d3a
3\\L2m
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That implies that

k'>k-N0

< CCfc2-fc8||Vha||flo..o||6||lfi,.,

since so > 1/2.
Up to that point, we did not actually use the energy estimate, but only laws of product or Sobolev embeddings.

The estimate of the term (F^2\bk)L2 w^l u s e m a crucial way the structure of the nonhnearity.
First of all, following a computation done in [5], we get that

(Fv
k
a\bk)L, = (^(a3)Ö36fc|6fc)L2+JRfc(a^) with (2.4)

Rk(a,b) ^
|fc'-fc|<iVo \k'-k\<N0

Then, using an intégration by parts, we infer that

(Sv
k(a

3)d3bk\bk)Li = -\{S%{d3a?)bk\bk)L2.

Thanks to the f act that a is divergence free, we deduce that

(*ï'2\hh* = (hSv
kdivha

h\bk)Li +Rk(a,b).

The term (bkSkdivh.ah\bk)L2 can be estimated as the term (Fk \bk) that appeared above. To estimate the term
([A£, Sk,_1a

3]d3A'k,b\bk)L2, w« write that, for any function u>,

([AÏ,S^_ia
3M(a:k,a;3) = 2k Jh(2ky3){S

v
k,_1a

3(xh,x3) - Sv
k/^a3(xh,x3 -y3))Mxh,x3 -y3))dy3.

Writing a Taylor formula, we get that

xs) = f /M(2fc(y3)(^_1Ô3a3)(^,X3 + t(xs -
Ax(O,l]

with hi(z) = zh(z). Thanks to the fact that a is divergence free, we get

( [ A ^ S ^ a 3 ] ^ ) ^ , ^ ) = - f hl(2
k{y3)(S

v
kf_1divhv

h)(xh}x3 +t(z3 -ys)Mxhyx3 - y3))dy3dt.
JMx[0,l]

Now, let us apply the rules of product of Sobolev spaces on R2; this implies that

i ï-è(!R2) < C ƒ 1^(2^3)1 II divh ^ lUoodR^.^^i ï è ( ! R 2 ) ƒ ^3)1 II divh ^lUoodR^.^^^I^C-,0:3 -

From this, we deduce that
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So we get

Finally, with Lemma 2 joint with the fact that \kf — fc| < iVo, we infer

^ M ^ < Cdk\\yha\\H0,o2-2ks\\b\\2

H1/2,s.

The term (S£ — S^.f _x)a
z d^A^b can be estimated exact ly as the term F^1. That concludes the proof of Lemma 3.

D

Remark 5. We are unable to estimate the term (F%\bk)L2(RX3;H*(m2))i f°r anY s ^ 0: that is due to the
fact that the estimate of (S^(as)d3bk\bk)L2(RX3;H

s{R2)) which appears in (2.4) would lead to terms of the
type ([Aj-, S%(a3)}dsbk\bk)L2(R3)' We do not see hère any way of recovering the vertical dérivâtive of bk be-
cause of the lack of vertical viscosity.

3. PROOF OF THEOREMS 2 AND 3

Proof of Theorem 2. It is obvious that for smooth initial data, smooth solutions exist (of course only for
short times); we shall prove a priori estimâtes for such smooth solutions.

As it occurs in the classical Navier-Stokes System, global resuit s for small initial data are easier to prove than
local resuit s for large data. In any case, the proof relies strongly on Lemma 3 proved in the previous section;
let us start by deducing from that lemma the global part of Theorem 2, Applying the operator Av

k and using
an L2 energy estimate gives, considering the fact that vv > 0,

where we dénote by Vk the term A^v. So using the above Lemma 3 with s = so and a — b = v, we get

f ^ K ( * ) I I L ' +"l|Vfct>fc(<)||£a < Cdk2-2ks°\\v\\2
Hhso\\Vhv\\Ho,so. (3.5)

Now multiplying this inequality by 22ks° and taking the sum over k gives

An obvious interpolation inequality tells us that

So we infer that

So, if ||^O||H°'SO is small enough, the function ||u(£)||^OlS0 decreases; more precisely, if

<
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then we get

So, we get that, for any positive t,

\Ht)\\2
Ho,so f

Jo

Now standard compactness arguments give the global existence resuit.
The proof of the local part of Theorem 2 consists in several parts, considering differently the high vertical

frequencies and the low ones.
The case of high vertical frequencies is treated thanks to the following lemma.

Lemma 4. For any SQ > 1/2, a constant C exists such that for any smooth solution v of (NSh) on [Q)T] x M.s,
for any integer N, we have

£ \\v(t)fHi,S0l|Vfc«(*)|Uo..0dt.

Proof of the lemma. We just have to multiply inequality (3.5) by 22ks° and take the sum for k bigger than
N — 1; we get

\k>N~l J k>N-l

22kS0\\VhVk(t)\\i2<C\\v(t)\\lhJVhv(t)\\Ho,sB.

Then Lemma 4 follows by intégration in time. D

Let us now consider the low vertical frequencies and high horizontal frequencies.

Lemma 5. For any so > 1/2, a constant C exists such that we have the following properties. Let M and N be

two integers such that M > N, and let us define VM,N = (Jd—S^S^v. Then

ls0 + C \ ||v(*)llffi/2>ao
•/O

Proof Again by standard energy estimâtes, we have

1 d „
,N\VM,N)L* , with

and

The term Fjfc N is estimated easily, using the product rules given in Lemma 1. Using the law of product, we
have
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As SQ > 1/2, we get

hence

To estimate H-F^

J.-Y. CHEMIN ET AL.

I r2fR - w e u s e

< C\\vh\\Hl/a..0\\Vhv\\Ho..0f

< C\\v\\2
Hl/2>So\\Vhv\\Ho,so.

v *s divergence ^ r e e : w e c a n write that

The term (Id—5^)5]^(Î; d iv /^) can be estimated exactly as FJ^^N. As to the other term, it is basic Fourier
analysis to observe that

ïd-Sh
M = 2-M{\à-Sh

M){Xi(D)d1 +X2(D)d2),
where Xi a r e smooth, homogeneous functions of degree 0. Then it is clear that when M > N,

So finally

which proves the lemma in an obvious way. •
Let us conclude the proof of the local existence part of Theorem 2. Let us observe that VQ is in L2(R3), so

we have the basic L2 energy estimate

+ 2* f
Jo

t' <

So it is obvious that

\\Sv
NSh

Mv{t)f^S0 + 2v f \\VhS^NSh
Mv{tf)fHQiSoàtf < C22M22Ns°T\\v0\\h.

Jo

So using an interpolation inequality and Lemmas 4 and 5, we infer that

So we deduce that

\\£TN(Id Sh
M)vo\\2

Ho,so

Then choosing first an integer N such that
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then an integer M greater than N such that

and finally a strictly positive real, number To such that

22M22N°°T\\v0\\h < V,

we obtain that, for any T < To,

So, for any positive real number 77, a positive real number T\ exists so that

That yields the result, and proves Theorem 2. D

Proof of Theorem 3. Let us start by proving the propagation result stated in Theorem 3, considering vo G iJ°'s,
with s > So; w^ just have to follow the computations leading to the global existence result with data in H°>s°.
We have, as for (3.5) and using also Lemma 3,

SO

By intégration, we find that

^ j r \\v(t)\\4
Hl/2,aodt+ ° ƒ \\Vhv(t)\\2

Ho,sodtj .

So we find that the life span of the solution is controlled by the following norm:

pT rT

T < +00
/o

f
Jo

Now we are left with the proof of the uniqueness of the solutions when 5 > 3/2. So let v\ and v<z be two solutions
of {NSh), with initial data vo, such that

Vie {1,2}, « ieL~([o,nff0 '*)nL2([o>n#1 ' ')I « > §•

and let w ~ v 1 — V2 • We have

dtw - uAhW + v± * Vw + w • Vf2 — — Vp,
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hence using Lemma 3 and interpolation inequalities, we can write

0,s-l\\w\\2
Hl/2,s-l + \\Vl\\Hl/2,s-l\\w\\Hl/2,s-l\\Vhw\\H0,s-lj

But with Lemma 1, we can write that

and
\(Al(w3d3v2)\wk)\ < C2-2k^-1Uk\\w\\Hi,a_1\\w\\Ho,e-

It follows that

d 2 2 ^ 2

2 j a _ x + \\VhV2\\2
Hi/2,s-i + ~2 \\\VI | | ^ i / 2 , s - i +

The result follows by time intégration, and Theorem 3 is proved. D

4. THE CASE OF ROTATING FLUIDS: PROOF OF THEOREM 4

In this final section, we are going to prove Theorem 4. We shall in f act prove a more précise result that
stated in Theorem 4, and in order to do so, we need to introducé some notation. We shall consider the following
rotating fluid system:

{ 2 1

otv — vAhV — u^doV ~\-v • Vv H—v x es — — Vp
€

V\t=0 = VQ .
The éléments of the kernel of the operator Lv = P(t) x e3), where P is the projector ont o divergence-free
vector fields, are bidimensional vector fields; so it is natural to introducé the solution of the bidimensional
Navier-Stokes équation:

ƒ dtü — vAhü -f ü - Vü = —Vp

where ÜQ is a bidimensional, divergence-free vector field.
Finally in order to state the following theorem, we need to introducé the solution to the free wave équation

associated with (RF€).

2 1

dtwF — vAhWF — vvo^wF H—wF x e^ — —VpF

e
div wF = 0

We shall prove the following result.
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Theorem 6. Let v > 0 and vv > 0 be two real numbers. Letv0 = üo+wo, where üo € L2(M?) is a bidimensional
vector field, and where w0 € H°>s, with s > 1/2. We suppose both fields are divergence free. Then there
exists Co, independent of vv, such that for e < eo, there is a global solution to the system (RF£), bounded
in L°°(R+,HO>S) Pi L 2(R+ ,# 1 'S) . Moreover, if s > 3/2, then the solution is unique. Finally when e goes to
zero, v satisfies

ü 0 in L o o (E+ , i f° ' s )n

The proof of that theorem mixes the results obtained in the previous sections with anisotropic Strichartz
estimâtes on wF, in the spirit of [6] : let us define

We have the following estimate.

T h e o r e m 7. For any vector field f we have, for any p ç [ l , oo],

in ( l , (£22 ' ' )*2*l'- f cl) | |A^A^| |L 2 ( R 3 ) . (4.6)min

Proof of Theorem 7. We follow exactly the same lines as in [6]. For the convenience of the reader, we present
hère a self contained proof. Like all Strichartz-type inequalities, (4.6) is the conséquence of dispersive estimâtes.
Writing

we have the following dispersive lemma.

Lemma 6. There exists a constant C such that the following holds. For any function f, we have

^ ^ 3 < Cmin ( I . T ^ " * ' ) 2^e~ce223\\f\\LÏt^. (4.7)

Proof of the lemma. Let us define

f
Then we have

where we have used a Young inequality in the horizontal variables, and Hölder's inequality in the vertical
variable, associated with Plancherel's formula.

Now all we need is an estimate of /^^(r, 0, -, •) in L^™3 : we can write

with

So we shall integrate by parts in the following intégral:

*(Ci,C3)d=i f


