@article{M2AN_2000__34_3_687_0, author = {Chen, Zhiming and Du, Qiang}, title = {An upwinding mixed finite element method for a mean field model of superconducting vortices}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {687--706}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {3}, year = {2000}, mrnumber = {1763531}, zbl = {1078.82548}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_3_687_0/} }
TY - JOUR AU - Chen, Zhiming AU - Du, Qiang TI - An upwinding mixed finite element method for a mean field model of superconducting vortices JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 687 EP - 706 VL - 34 IS - 3 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_3_687_0/ LA - en ID - M2AN_2000__34_3_687_0 ER -
%0 Journal Article %A Chen, Zhiming %A Du, Qiang %T An upwinding mixed finite element method for a mean field model of superconducting vortices %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 687-706 %V 34 %N 3 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_3_687_0/ %G en %F M2AN_2000__34_3_687_0
Chen, Zhiming; Du, Qiang. An upwinding mixed finite element method for a mean field model of superconducting vortices. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 3, pp. 687-706. http://archive.numdam.org/item/M2AN_2000__34_3_687_0/
[1] The mathematical theory of finite element methods. Springer-Verlag, New York (1994). | MR | Zbl
and ,[2] Mixed and Hybrid Finite Element Methods. Springer, New York (1991). | MR | Zbl
and[3] A mean-field model of superconductmg vortices in three dimensions. SIAM J. Appl. Math. 55 (1995)1259-1274. | MR | Zbl
,[4] Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. | MR | Zbl
and ,[5] A mean-field model of superconducting vortices. Euro J. Appl. Math. 7 (1996) 97-111. | MR | Zbl
, , and ,[6] Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductwity. (Preprint, 1998). | MR | Zbl
and ,[7] The Runge-Kutta local project ion discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581. | MR | Zbl
, and ,[8] Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998).
,[9] Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. | MR | Zbl
, , and ,[10] Computational simulations of type-II superconductivity including pinnnig mechanisms. Phys. Rev. B 51 (1995) 16194-16203.
, , and ,[11] Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999). | MR | Zbl
, and ,[12] High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. | MR | Zbl
and ,[13] Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D. 77 (1994) 383-404. | MR | Zbl
,[14] Numerical analysis of a mean field model of superconductivity, preprint.
and ,[15] Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). | MR | Zbl
and ,[16] Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). | Zbl
,[17] Evolution of Mixed-state Régions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. | MR | Zbl
and ,[18] On a Finite Element Method for Solving the Neutron Transport equation, in Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974). | Zbl
and ,[19] On the Bean critical-state model of superconductivity. Euro J. Appl. Math. 7 (1996) 237-247. | MR | Zbl
,[20] The Bean model in superconductivity variational formulation and numerical solution. J. Com. Phys. 129 (1996) 190-200. | MR | Zbl
,[21] A mixed element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method) Lecture Notes on Mathematics, Springer, Berlin 606 (1977). | Zbl
and ,[22]Analysis of a mean field model of superconducting vortices, (preprint). | Zbl
and ,[23] Navier-Stokes equations, Theory and Numerical Analysis North-Holland, Amsterdam (1984). | MR | Zbl
,