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ASYMPTOTIC FORMULAS FOR PERTURBATIONS
IN THE ELECTROMAGNETIC FIELDS DUE TO THE PRESENCE

OF INHOMOGENEITIES OF SMALL DIAMETER

MlCHAEL S. VOGELIUS1 AND DARKO VOLKOV1

Abstract. We consider solutions to the time-harmonic Maxwell's Equations of a TE (transverse
electric) nature. For such solutions we provide a rigorous dérivation of the leading order boundary per-
turbations resuiting from the présence of a finite number of interior inhomogeneities of small diameter.
We expect that these formulas will form the basis for very effective computational identification algo-
rithms, aimed at determining information about the inhomogeneities from electromagnetic boundary
measurements.
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1. INTRODUCTION

The homogeneous, time-dependent, linear Maxwell's Equations take the form

VxE = - M | H

VxH = J/ + £^E.

E G M3, and H G M3, is the electric field and the magnetic field respectively. The coefficients /i and e are
referred to as the magnetic permeability and the electric permittivity of the medium. J / is the free current - it
is related to the field E by J / = aE, where a dénotes the electric conductivity of the medium. For a discussion
of the physical modeling leading to these équations, we refer the reader to [9] or [11].

It is quite common to consider time-harmonic solutions to the above équations, i.e.} special solutions of the
form

E(x,i) = Re{E(x)e"iu;t}, and H(x,i) = Re{H(x)e-^}, x G M3, t > 0,

where co > 0 dénotes the given frequency, and where the complex valued fields E(x) and H(x) satisfy

V x E =
V x H = (~i
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In order to arrive at particular non-trivial solutions to these équations, it is most natural to either introducé
current sources (additive to the free current) or to prescribe non-trivial boundary conditions (E x v or H x v)
on the boundary of a given domain f2 {y dénotes the outward unit normal to 17). Hère we consider only the
latter possibilité

An underlying objective of the work described in this paper is to détermine, most effectively, properties of
the scalar parameters (functions) (JL > 0, e > 0 and a > 0 inside S7 from overdetermined boundary information
about spécifie solutions to (1). In order to put (the objective of) our work in context, let us therefore briefly
review the current state of knowledge concerning this "inverse problem", in case the Cauchy boundary data of
ail solutions are known. The term Cauchy boundary datum is used to dénote any pair (E|r x i/} H|r x v)] F
dénotes the boundary of Ct. If we assume co is not an eigenfrequency, then the set of Cauchy data is the graph
of a map, le. it consists of pairs of the form (E|r x v, Aw(E|r x ^)). The mapping

A^ : E|r xi /-> H|r x y

is well defined as a mapping from the space TH^(T) into itself (this latter space is the vector space of H1/2

vectorfields that are tangential to F, and that have a surface divergence which also lies in H1/2). It is well known
that the operator Aw (corresponding to just a single positive frequency) uniquely détermines the coefficients
ji. e and er, provided these are sufficiently smooth (C3) and remain so when extended by constants outside
Q [16]. This resuit is a generalization of an earlier resuit for the scalar conductivity équation (the case formally
corresponding to the eigenfrequency UJ = 0). Indeed in the latter case (so-called direct current) the electric field
takes the form of a gradient, E = Vu, where the (voltage) potential u now satisfîes

V • aVu = 0.

The tangential field E|r x v equals Vr^ x v (the surface curl of u). The tangential field H|r x z/, on the other
side, is only defined modulo a surface curl. This is equivalent to saying that only Vr • (H x v) = Divr(H x v) =
y- (V x H)|r = ^-aE|r = crf^lr is well defined. Full knowledge of the map AQ is thus formally equivalent to full
knowledge of the Dirichlet to Neumann data map, A, which sends uy into A(itr) = ^f^lr- For a rigorous proof
of the fact that A(/) = Vr • (lim^^o Aw)(Vr/ x u), for sufficiently smooth ƒ, see [13]. For the conductivity
problem it has been known for some time that the Dirichlet to Neumann data map uniquely détermines an
isotropic conductivity a, see [12,15,20].

We now focus on a special case of the three dimensional Maxwell's Equation, namely the case where the
coefficients /x, e, a and the fields E, H are independent of one of the variables, say xs (and the domain
takes the form of a cylinder parallel to the Xa-axis). In this case the MaxwelPs Equations split into two
sets of independent équations, one for the fields E* — (0,0, £3), H* = (iJi,i/"2,0) and one for the fields
E** = (Ei,E2, 0), H** = (0, 0, H$). The first set of équations are associated with the terminology TE (transverse
electric), the second set with the terminology TM (transverse magnetic). We note that the (full) Maxwell's
Equations can be reformulated as an équation for the electric field

V x ( -V x E) - u)2(e + i-)E = 0,
fJb Lu

with the magnetic field given by

H = — V x E.
i
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TE symmetry

Consider now the TE situation. Let
"cross sectional coordinates" x = (xi

FIGURE 1.

dénote the cross section of the (vertical) cylinder, and let x dénote the
C2). The équation for E* transforms into the following scalar équation

i-)E3 = 0
LU

V£ • (-V3E3) + w2

for £3, with the corresponding magnetic field H* given by

H* = — ( ^ - £ 3 , - ^ - £ 3 , 0 ) .
lüüjJL OX2 OX\

Knowing E* x v on the (vertical) boundary of the three dimensional domain amounts to knowing Es on the
boundary of the two dimensional cross section. Knowing H* x v on the (vertical) boundary of the three dimen-
sional domain amounts to knowing ~-§^Es on the boundary of the two dimensional cross section. Knowledge
of the boundary mapping E* x v —> H* x v is thus equivalent to knowledge of the Dirichlet to Neumann map
A^ : Es\dn —• --J^EZ\QÇI. If /x, e and a are sumciently smooth and sufficiently close to constant, then one may
use the arguments in [10] to show that full knowledge of A£ for two different jrequencies, Ui andu2, is sufficient
to détermine these three scalar coefficients. The argument roughly goes as follows: A^ détermines - as well as

-^ f - J on the boundary; by introducing v = f \/~) ^ 3 Î the identification problem now becomes equivalent to

determining /x, e and a from knowledge of the map 3?̂  : v\an —> f^loa-, where v is any solution to the équation

Av iu)a{i - - J )v = 0.

If we suppose /x, e and a are sumciently smooth and close to constant, then knowledge of &LJl (for a single value
of u) allows the unique détermination of GJÂ and u>\e\i — y/JIA ( \ /~ ) (a s™P^e extension of the core resuit in [19]
to complex potentials). However, this single-frequency knowledge is clearly insufficient for the détermination
of the individual functions /x, e and a. The requirement, that the functions be close to constant, owes to the
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fact that we are in two dimension. If we additionally know $W2, for a frequency UJ<I ^ uj\, then we immediately
arrive at knowledge of afi, efi and y /̂IA ( */- J. Since — and ^ f - j are known on the boundary this allows

the détermination of \i (due to the uniqueness of the solution to the corresponding Cauchy problem for y-)-
Finally we may now also détermine e and a.

The aim of this paper is to dérive asymptotic formulas for the electric and magnetic fields in the practically
very interesting situation, where a number of objects of small diameter and with different material characteristics
are imbedded in an otherwise smooth medium. For simplicity we assume that the material characteristics of each
of the inhomogeneities as well as those of the background medium are constant. This simplification allows us to
base our analysis largely on boundary intégral methods: it also allows us to use an explicit fundament al solution
for the underlying Helmholtz Equation. In view of the above identification results, and based on our expérience
with the direct current conductivity problem, we expect that (the boundary traces of) our formulas will allow
very effective détermination of the location and the size of the imbedded objects. It should be particularly
interesting to dérive numerical reconstruction algorithms based on these formulas and on principles, similar to
those described in [1,3,5, 17]. A particularly challenging practical application would be the détermination of the
location of antipersonnel- and other types of mines. Another application would be to so-called "eddy current
methods", which are now frequently used for corrosion- and other métal defect inspection [cf. [4,7]).

In this paper we concentrate on the situation of TE symmetry. Entirely similar formulas could be derived in
the case of TM symmetry. It is the focus of current work to rigorously dérive corresponding formulas for the
solutions to the (full) three dimensional Maxwell's Equations. Although the formulas we dérive in this paper
may be regarded as generalizations of those already derived in [5], the analysis presented hère is quite different
and entirely selfcontained.

2. THE MAIN RESULTS

Let Obea bounded, smooth subdomain of M2. For simplicity we take d£l to be C°°, but this condition could
be considerably weakened. We suppose that O contains a finite number of inhomogeneities, each of the for m
Zj + pBj, where Bj C l 2 is a bounded, smooth (C°°) domain containing the origin. The total collection of
inhomogeneities thus takes the form Xp = UJ^1[ZJ + pBj). The points Zj E fi, j = 1, .. . , m, that détermine
the location of the inhomogeneities are assumed to satisfy

0<d0< \ Z J -
0<d0 <dist(z Vj. (2)

FIGURE 2.
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As a conséquence of this assumption it follows immediately that

m ;

We also assume that p > 0, the common order of magnitude of the diameters of the inhomogeneities, is
sufnciently small that these are disjoint and that their distance to E2 \ ft is larger than do/2. Let //* > 0,
e° > 0 and a° > 0 dénote the permeability, the permittivity and the conductivity of the background medium;
for simplicity we shall in this paper assume that these are constants. Let jJ > 0; e? > 0 and er? > 0 dénote the
constant permeability, permittivity and conductivity of the jth inhomogeneity, Zj + pBj. Using this notation
we introducé the piecewise constant magnetic permeability

j?, x G Zj + pBj, j — 1 . . . m.

The piecewise constant electric permittivity and electric conductivity are defined analogously. LÜ > 0 is the
given frequency. The electric field (or rather, the transversal strength) in the présence of the inhomogeneities,
is denoted Ep. It is the solution to

-i

V-( — VEp)+u2(ep + i^)Ep=0, in ft, (4)
\lp Lü

with

Ep = ƒ, on dil. (5)

The équation (4) may alternatively be formulated as follows

1 2 o .ff0 __
/ i° P Lü P P î

V-(— VEP) + u>2(<? +i—)Ep = 0 in zj + pBjy
IJp Lü

E+ = E- and \ {VEP • u)+ = - j - {VE„ • v)~ on d(zj + pBj).

Here v dénotes the outward unit normal to d(zj + pBj); superscript H- and — indicate the limiting values as we
approach d(zj + pBj) from outside Zj + pBj. and from inside Zj + pBj} respectively. The electric field, Ey in
the absence of any inhomogeneities, satisfies

1 o a°
V • (—VE) + u)2(e°-hi—)E = 0 in ft, (6)

V° Lü ^

with

E = ƒ on dfl. (7)

Since all the involved coefficients are constants, this may also be rewritten

(A + k2) E = 0 in ÎÎ, with E = ƒ on dfl.

Here k2 is the (complex) constant
7 , 2 ^_ 2 0 / 0 1 • _ \

Lü
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In order to insure well-posedness (also for the p dependent problem) we shall always assume that

—k2 is not an eigenvalue for the operator

A with Dirichlet boundary conditions. (8)

Before formulating the main results of this paper we need to introducé some additional notation. For any
1 < j < m, let <j>j dénote the vector valued solution to

A(/>j = 0 in Bj , and in R2 \ ~Wj
4>j is continuons across dBj
/iJ , d<pj . _|_ r d<pj _ (9)
fi® du du
limi^^QQ \4>j(z)\ ^ 0.

The existence and uniqueness of this <f>j can be established using single layer potentials with suitably chosen
densities, see [5]. We note that for a fixed j , <f>j = 4>{ei + <̂ »2e2) where {ei ̂ 2} is the standard basis for M2,
and 4>i, <pJ

2 are the scalar functions introduced in [5].
The polarization tensor, Mj. corresponding to the j ' t h inhomogeneity is now given by

( ) [ (y)(fj{y))(y) (10)
M JdBj

We have used the notation MJ(^Ô) to signify that, for a fixed shape of the inhomogeneity Bj, the polarization

tensor dépends only on the ratio %. It is not difficult to prove that Mj is a symmetrie, positive definite 2 x 2

matrix (Mj is up to a factor of ^ identical to the rescaled polarization tensor introduced in [5]).

Let # Q dénote the Hankel function of the first kind of order zero (sometimes this is also referred to as a
Bessel function of the third kind), see p. 108 in [14] or p. 73 in [21]. We introducé the function

We recall that for w a non zero complex number with ~TT < Argio < TT, HQ(W) is given by

H^\w) = JQ(W)

where JQ is the Bessel function of the first kind of order 0:

m=Q

and YQ is the Weber-Schlâfli function (sometimes also referred to as a Bessel function of the second kind) of
order 0:

9 1 °° / 1 \m "1 1 1 1

7T 2 *-** [m\y 2 1 z m

Hère 7 dénotes Euler's constant
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For more details we refer to Chapter 3 in [21]. The function $fc is a "free space" Green's function for A + &2,
in other words, it satisfi.es

in M2.

One of the main results proven in this paper is the following asymptotic formula concerning the perturbation,
{~of- — 7^7)[anj in the (rescaled) boundary magnetic field, caused by the présence of the inhomogeneities. In
this connection we note that, even though the individual normal derivatives (-^7 and ^ ) may only be defined
in a distributional sensé on dVt (if ƒ is just in i?1/2(3Q)) elliptic regularity results ensure that the perturbation

§^)|ao is indeed an infmitely smooth function.

Theorem 1. Suppose (2) and (8) are satisfied. There exists 0 < po such that, given an arbitrary ƒ G Hl/2(dfl),
and any 0 < p < po, the boundary value problem (4)-(5) has a unique solution Ep. The constant p0 dépends on
the domains {Bj}JL1, Q, the constants {//^e^cr7}!^, the frequency tu, and do, but is otherwise independent
of the points {ZJ}JLX. Let E dénote the unique solution to the boundary value problem (6)-(7) corresponding to
the same ƒ G Hl/2(dQ). For any x G dft we then have

, , . dEf . _ f (dEp dE\. ,d§k{x,y)

9z/ Jön ^öi/ dv J dv(x)

O(

For any fixed 5 > 0, the term O(p3~ô) is bounded by Cp3~ô
} uniformly in x. The constant C dépends on 5,

the domains {Bj}JL1} Q, the constants {/x-7', e-7, aj}J^0, the frequency UJ, \\f\\H1/2(dQ)> an^ ^0; but is otherwise
independent of the points {ZJ}™^.

Let Ep and E dénote solutions to the same équations as Ep and E, but with Neumann- instead of Dirichlet
boundary conditions, i.e.:

1 dËp 1 Ô Ê
~n ~^~ = ~n ̂ ~ = 9 o n 9CI. (11)

We also dérive an asymptotic formula concerning the perturbation Ep — E.

Theorem 2. Suppose that ~k2 = —oj2fjP(e° + i^j) is not an eigenvalue for the Laplacian with Neumann
boundary conditions, and suppose that (2) is satisfied. There exists 0 < po such that7 given any g G üT"1/2(9ri);

and any 0 < p < po, the boundary value problem (4), (11) has a unique solution Ep. The constant po dépends
on the domains {Bj}1Jl

=l, Q, the constants {jJ^ é, aj}JL0, the frequency UJ, and do, but is otherwise independent
of the points {ZJ}JLI- Let E dénote the unique solution to the boundary value problem (6), (11) corresponding
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to the same g € H~1/2(dQ). For any x E dfl we then have

Ëp(x) - É(x) + 2 JjÉp - É)(y)d^y)
V) ds(y)
m

~ 9 X—**>
= 2P >

m 0 _ j

3 = 1

For any fixed Ô > 0, the term O(p3~s) is bounded by Cp3~§, uniformly in x. The constant C dépends on S,
the domains {Bj}JLx, £1, the constants {/zJ',e5',<jJ"}^L0, the frequency UJ, \\g\\H-x/2(dQ,)> an^ do, but is otherwise
independent of the points {ZJ}7JL1.

We notice that the asymptotic formula in this last theorem represents a gêneralization of that stated in
Remark 2 of [5], where we considered "only" the direct current conductivity problem. We also notice that
Theorem 1 and Theorem 2 (as well as the proofs we provide) have direct analogs for dimension higher than 2 -
however in that case the équations satisfled by Ep (Êp) and E (Ë) have no relation to the Maxwell's Equations
- and so we have decided not to include that "generalization" hère.

The next four sections are devoted to a proof of Theorem 1. Brieny described the proof proceeds as follows.
In Section 3 we establish the well-posedness of the problem (4)-(5); to be more spécifie, we use the theory of
collectively compact operators to prove that if the situation corresponding to p = 0 (the background situation)
is not at an eigenfrequency, then the boundary value problem (4)-(5), for p sufficiently small, has a unique
solution, which is bounded independently of p. As a first step we then dérive, in Section 4, an energy estimate
for the différence Ep — E. Based on this estimate and a boundary intégral formulation we are now able to
obtain an asymptotic formula for Ep — E on the boundary of each of the inhomogeneities. This formula is
found in Proposition 3 of Section 5. By a fairly straightforward application of Green's formula (as detailed
at the beginning of Sect. 6) the values of (Ep — E)QQ plus a certain convolution of the corresponding normal
derivative can be related to a combination of appropriate intégrais of Ep over the inhomogeneities and over
their boundaries. The formula from Proposition 3 now allows us to express those intégrais in terms of the
polarization tensors, the volumes of the inhomogeneities, the Hankel function and the background field E. This
all leads to the proof of Theorem 1, given at the end Section 6. As a final remark there is a brief outline of the
(rather minimal) changes required for a proof of Theorem 2. In Sections 5 and 6 we restrict, for simplicity, our
attention to the case of a single inhomogeneity, ie . , the case m = 1.

3. WELL-POSEDNESS

Frorn the assumption (8) it follows immediately that the constant coefficient problem

f V-(^Vu) +u>2(e° + i£)u = F in ft
1 u = 0 on dft

is well-posed: for any F € H~1(Ü.) this problem always has a unique (variational) solution, and furthermore
there exists a constant C such that ||w||iïi(Q) < C||.F||#-i(n). In this Section we prove that the assumption (8)
also guarantees that the problem

ƒ v • (£ V u ") + w 2 ^ + * £ ) UP = F in n
 (12]

\ Up = 0 on dû K }

is well-posed for p sufficiently small. Here the piecewise constant coefficients /xp, ep and ap are as defined in (3).
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Proposition 1. Suppose (2) and (8) are satisfied. There exist constants 0 < po and C such that, given any
0 < p < po and any F G H~~X(Q), the problem (12) has a unique (variational) solution, up G HQ(Ù). This
solution furthermore satisfies

The constants p0 and C depend on the domains {Bj}JLlt the domain ft, the constants {fJ, ej, aj}JL0, the
frequency UJ, and d0, but is otherwise independent of the points {ZJ}JL1.

It follows as an immédiate corollary that:

Corollary 1. Suppose (2) and (8) are satisfied. There exist constants 0 < po and C such that, given any
0 < p < po and any ƒ G H1/2(dû), the problem (4)-(5) has a unique (variational) solution, Ep € H1^). This
solution furthermore satisfies

The constants po and C depend on the domains {Bj}JÏLlf the domain fl, the constants {/iJ', eJ, c r J }^ 0 ; the
frequency eu, and do, but is otherwise independent of the points {zj}rJl

=1.

In order to prove Proposition 1 it is useful to make two observations concerning convergent series of bounded
linear operators. The flrst observation is:

Lemma 1. Let T , Tn , n = 1, 2, • • • be bounded linear operators mapping one Banach space B\ onto another
Banach space B2 • Suppose that Tn —> T , pointwise. If T'1 is well defined and \\T~1\\SC{B2,B1) ^ bounded
independently of n} then T"1 exists, and T~x —> T"1, pointwise.

Proof Since

c||z||i < ||Tnx||2,

it follows immediately from the assumption about pointwise convergence, that

cIMIi < \\Tx\\2,

and hence, that T"1 is well defined. Since

TnT~ly -> TT-Xy = y, a s n ^ o o ,

we obtain

cWT^y - T-^Hi < \\y - Tn T^yh - 0, as n - , oo.

This ensures the pointwise convergence of T"1 to T"1 . •

For the second observation we need the notion of collective compaetness. Let {Tn}^=1 be a séquence of
bounded, linear operators of a Banach space B (into itself). We shall say that {Tn}™=1 is collectively compact
iff the set {Tn(x) : 1 < n, \\x\\ < 1} is relatively compact (Le. its closure is compact).

Lemma 2. Let T , Tn , n = 1,2. * • • be bounded, linear operators of a Banach space B. Assume that Tn —» T,
pointwise, and that {Tn — T}^LX is collectively compact. For any scalar, X, the two following statements are
equivalent:

(a) À — T is an isomorphism;
(b) there exists N such that X — Tn is an isomorphism for n > iV,

and the set {(À — Tn)~
x : n > N } is norm bounded.
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Proof. This is the first assertion of Theorem 4.3 in [2]. We refer the reader to that book for a proof. D

It is convenient to introducé the constants

-
LU

and the corresponding functions

For a flxed positive constant, s, wit h

s > max {Reç-Ù, (13)
0<j<m

let LPj{Zjy : ü/"o (Q) —> H 1(O) dénote the linear operator denned by

Lpt{*j}u = V " (7pVw) + qpu - su. (14)

Given u and Î; in HQ(CI)

\{Lp^Zjyu, v)\ — / jpVuVvdx — / qpuvdx -\- s uvdx
Jn Jn Jçi

< C \\U\\H1(Q) 11̂ 11̂ 1(̂ )1

where {, ) represents the usual duality pairing between HQ(£Ï) and if~1(il) (the natural extension of the L2

inner-product). Due to the lower bound for 5, we also have

\ { L P t { z . } u , u ) \ = I / 7 p | V u | 2 d £ - / q p \ u \ 2 d x + s / | u | 2 d x
1 Jçi J n J n

/ [ Vu |2 dx > c ( / | Vu |2 drc + / | u [2 àx).
Jn v Jn Jn J> c

These two estimâtes show that Lp^{Zj} is continuous and invertible, and that there are positive two constants
C\ and C2, independent of p and {zj}JLl: such that

II Lpt{zj} WBCIH^Q)^-1^)) ^ Cl) a n c i II (Lpdzj}) WBCiH-HfytHUQ)) ̂  ^2- (15)

Let F be in H~l(Q)] the équation (12) is equivalent to

V -(7pVu) + çp^ = F,

with n € iï"o(fî)- This latter équation may be rewritten

LP,{Zjyu + s lu = F, (16)

where / dénotes the natural compact injection HQ(Q) —> iJ~1(O). Finally, (16) is equivalent to
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Lemma 3. Let s be a positive constant satisfying (13). Let pn be a séquence with pn —> 0, as n —» oo; and let

{z'j'}1jL1 be a séquence o f sets of points in $1 satisfying (2). The séquence of operators ( LPn^zny j ƒ (from

iîo(S7) to itself) is collectively compact and converges pointwise to LQ1 I', where LQ : HQ(Q) —> H~l(Q) is
defined by

Lou = V • (70Vu) + q°u - su.

Proof. To verify the pointwise convergence, we observe that for u and v in HQ (O)

\((LPnt{x?}-LQ)u,v)\=

Since \TPn\ = ™ + 0 as n —> oo, this proves that

(qPn-q°)uvdx

0 in
other words, that ^p.n,{««} converge pointwise to LQ . Since the operators LPnt{zny (as well as

onto 7J~1(Q), it now follows from the second estimate of (15) in combination with Lemma 1, that

converge pointwise to L^1. As a conséquence (LPn^zriyj I converge pointwise to LQ1 I.
In order to verify the collective compactness it suffices to prove that any séquence of the form

, or in
map HQ(Q)

i,{^1}) I u i \ ' w i t h

has a convergent subsequence. Let us first consider the case that pni —> 0 as / —> oo.. For simplicity of notation,
we shall from now on use the notation pi and zj in place of pni and z™1. The séquence lui lies in a compact subset
of iï"~1(Q) since Hw/Hiĵ n) < 1 &nd since / is a compact operator. lu\ thus has a convergent subsequence,
which we shall continue to index by l. Let F e H*~1(Q.) be its limit. Then

lui ~
\Hlin)

- 1

<C 2 | | / ^ -

To get the last inequality we have used the second estimate in (15). Since the final right-hand side of the above

estimate converges to zero as l converges to oo, it follows that the (sub)sequence (Lpi^ziyj lui is convergent.
Now consider the case that pni does not converge to 0 as l —•> oo. In this case there must necessarily be an

index n*, and thus a value yo*, and a set of points {ZJ}J!L1, that are repeated infinitely often. The existence of

a convergent subsequence of the séquence f Lpn ̂ ly) lui now follows directly from the compactness of the

(fixed) operator [Lp*y{z*}j -̂ This complètes the vérification of the collective compactness of the original

séquence I. •
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We are now ready for the:

Proof o f Proposition 1. Let s be subject to the lower bound (13). From our assumption (8) it follows immediately
that the operator

- + Lô11 = -Lô^Lo + s) = —Lô\A + k2),
S S S

is an isomorphism of HQ(CL). Let pn be any séquence converging to 0, and let {z^7jLl be a séquence of sets of

points in f2, satisfying (2). From Lemma 3 we know that the séquence f LPn^zny ) I (and thus the séquence

(LPri){zny ) I — LQ1 I) is collectively compact with (LPn^zV-y ) I —> LQ1 I7 pointwise, as n —• oo. From an

1
—\~ •nAz7?} ) / is an isomorphism for n> N,

and

è m <C, n>N. (18)

It now follows that the équation (17) with p ~ pn and {ZJ}JLI ~ {z^}JLii n ^ ^ ; n a s a unique solution for
any F G H~1(Q). Due to the équivalence of the équations (17) and (12) we conclude that (12) with p = pn and
{ZJ}JL± — \z™Y£=\-> n — ̂ ' n ^ s a m n ( l u e solution. Because of the uniform bounds (15) and (18), we furthermore
conclude that this solution, un G HQ(Q), satisfies

ll«nlliîoi(n) < C\\F\\H-Ha),

with C independent of n.
Now suppose Proposition 1 was not true. Then we could either find a séquence pn —> 0 and points {z™}JL1,

satisfying (2), such that:

(a) the problem (12), with p = pny and {zj}f=1 = {z™}™=i is

not uniquely solvable (for F E. H~1(Q)),

or we could find a séquence pn —»• 0 and points {z™}?^, satisfying (2), such that

(b) the problem (12), with p = pn , and {zâ}f=1 = {^n}Jli

always has a unique solution, but there exists Fn G H~1{Q)

such that WUUWHI^) > n\\Fn\\H-i{n).

We may without loss of generality suppose that m is fixed, since according to the assumption (2) it only has a
finite number of possible values. Both the situation (a) and the situation (b) represent a contradiction to what
we just proved, and consequently Proposition 1 must be true. D
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Using the results of the preceding section we can easily dérive:

Proposition 2. Suppose (2) and (8) are satisfied. Let po be as in Proposition 1 and Corollary 1, and let Ep,
0 < p < po; and E dénote the solutions to (4)-(5) and (6)-(7) for some ƒ G Hl^2{dVt). There exists a constant
C, independent of p and f} such that

\EP - \VEP - C p\\f\\Hi/a{aa). (19)

The constante dépends on the domains {Bj}JLl} Q, the constants {/i-7, e-7, <rJ}??L0; the frequency eu, anddo} but
is otherwise independent of the points {ZJ}J!=I*

Proof The function Ep — E is in HQ(ÇI), and for any u in

f
Jn

—V(Ep -
Lu

- E) u\ dx

-—-WE-Vu
JQ.

= f [(4r - —
U)

dx.

Next

/ [(ni ~ — )
hp L M0

 VP
dx <C(\\E\ L2iJp)

Since Jp is bounded away from dQ, standard interior elliptic regularity results give that
C\\E\\Hi(n) < C||/ | |Hi/2 (an) ) and so

and

a i
\E\2dxY <

-P

We conclude that Ep — E satisfies

( — V(EP -
flp

Lu
= G in fi,

Ep - E = 0 on

with

From Proposition 1 it then follows that

\\EP-E\\HHO) <Cp\\f\\Hx/2(dQ),

exactly as desired. D
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5. THE ASYMPTOTIC BEHAVIOUR OF EP - E ON dlp

-) =-öx inft
ondft.

For any x € ft let <&Q(X} • ) dénote the solution to

f (A + fc2)*g(a;,-
\ ^§(x,-) = 0

It is not hard to see that $o(^ v) = ®o(Vix) f°r a ny x>2/ ̂  ^ (with x / y ) . For any yGflwe thus also have

r (A + /c2)^(-,y) = -$„ inn
1 *S('.y)=O onöfi.

In terms of the special, free space Green's function

$k(x,y)=l-H£\k\x-y\),

introduced earlier, we have

$%{x,y) = $k(xiy)+K1(x,y)1 (20)

where K\{ *, • ) is in C°°(ft x ft). Furthermore i^i(x, • ) is in C°°(ft) for any x G ft, and by symmetry, K\{ •, y)
is in C°°(ft) for any y e a

It will also prove helpful to express $Q in terms of the function defined by $°(x,y) = — ̂  log \x — y\, a free
space Green's function for the Laplacian. We have

y)7 (21)

where Ki{x% y) is in C°°(Q x Q \ {(xy y) : x = y}). For fixed x G Cl the function K2(x, • ) satisfies

AK2(x, • ) - A ^ ( x , • ) - A$°(z, • ) = -fc2*g(x, - ). (22)

Due to (20) and the fact that §k(x>y) — —^ log \x — y\ + K^x^y), where K3 is uniformly bounded on any
compact set (see for instance pp. 60 and 73 in [21]) it follows that ^ ( ^ ' ) ̂ s m LP(ÇÏ) for any p < 00. For fixed
x G ft the function ^2(2^ •) is clearly C°° on dft] from (22) and the fact that $Q(#, •) is in Lp it now follows
that

K2(x, •) is in W2>p(ü) for any p < 00.
The argument above also shows that the W2>p norm of K2{x,-) is uniformly bounded as x varies over any
compact subset of Î7. Sobolev's Imbedding Theorem now implies that (given a compact set IC C ft) there exists
a constant C such that

\\K2{x, • )IUco(n) + \\VyK2(x, -)\\Loo(n) < C for all x e IC. (23)

In order to establish a représentation formula such as that in Theorem 1, we may work on one inhomogeneity at
a time, since these are a fixed minimum distance apart. In other words, we may develop représentation formulas
involving the différence between the electric field with l inhomonegeneities and that with l — 1 inhomogeneities,
l = m, . . . , 1, and then at the end essentially form the sum of these m formulas (the référence field changes, but
that may easily be remedied). The proof of each of the m formulas is virtually identical. We only give the details
when considering the difïerence between the electric fields corresponding to one and zero inhomogeneities. In
other wörds, we provide the proof of Theorem 1 in the case m = 1. In order to further simplify notation we
assume that the single inhomogeneity has the form pB> that is, we assume it is "centered" at the origin (which
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we assume is contained in Q). The condition (2) now translates into the condition that dist(O,9fï) > cfo, and
we note that the remainder terms in our estimâtes in this and the following Section all depend on do, (and the
shape of B and Q) but are otherwise independent of the exact location of the origin inside ft. We dénote the
permeability, the permittivity and the conductivity inside pB by //*,-€*, and a*, respectively. Due to interior
elliptic regularity results we know that E is in C°°(fï), and that Ep is in C°î/3(£~2) (for some j3 > 0) as well as
in C°°(pB) and in C°°(ft \ pB) (with the normal derivative of Ep having a jump across dft). Initially we shall
assume that ƒ is in Cl>a(dft), to make sense of various boundary intégrais, but this condition will be relaxed
later. If ƒ is in Clia(dft)} then E and Ep are both O1'0" near and up to the boundary, dft.

For x G ft \ pB, intégration by parts provides the usual intégral représentation formulas for Ep and E

and

Since we have chosen 3>o s o that $^(x}y) = 0 for x in £1 and y on dft. these représentation formulas may be
simplifled, to read

and

Our first observation is:

Lemma 4. For x in the open set 2pB \ pB:

Ep{x)-E{x) = (l - ^ ) f Ep(y) d®°y>V> ds(y) + O(p2 [ logp| ). (26)
v M y JdpB uv^y)

The term O(p2 |logp|) is bounded by Cp2 |logp| uniformly in x. The constant C dépends on the shape of B
and ft, the constants /i*,e*,cr*; the constants / /^e^a 0 , the frequency ÜJ, do, and the norm \\f\\H1/2(dn)-

Proof. Subtracting the représentation formulas (24) and (25), and recalling that E = Ep on dft, we get



738 M.S. VOGELIUS AND D. VOLKOV

x e Q\ pB. Use of the jump condition -\{-§£-{y) ) + = ~^(~§r{y) )~ a n d the Divergence Theorem, gives

x € Cl \ pB. Hère (k*)2 dénotes the constant (fc*)2 = u;2//*(e* + i^j)- In order to verify (26) it now suffices to
show that

£2pB\pB. (27)
PB

This is an immédiate conséquence of the two estimâtes

Ep(y)$*(x,y)ây\ < \\Ep\\L2{pB)
pB JpB

Cp

and

\\EP\\L*(PB) < \ \ E p - H p )

< \\EP-E\\L2{Q)+Cp

< Cp.

For the flrst estimate we have used (21) and (23). For the last estimate we have used Proposition 2, and the
fact that ||i?||z,°°(p.B) < C\\E\\Hi(ty < C\\f\\Hi/2^dny To give a shorter dérivation of the estimate (27) we could
alternatively have relied on the fact that H^IIL^CPB) ^ Cll^pllfl"1^) ^ CII/IIH1/2^^^)) ^ m s ^ac^ foUows from
Theorem 8.16 of [8] and Corollary 1. •

It is possible to replace ^ by the more convenient (explicit) function ^°(x,y) = — ̂  log \x — y\.

Lemma 5. For x in the open set 2pB \ pB:

Ep(x) - E(x) = ( 1 - j£ ) j d B Ep{y) 9^y)
y) ds(y) +O(p2\ \ogp\ ). (28)

The term O(p2 \ logp\ ) is bounded by Cp2 \ logp|, uniformly in x. The constant C dépends on the shape of B
and Q, the constants /i*,e*,<T*; the constants fjPye°,a°, the frequency UJ, do, and the norm \\f\\Hl/2{dQ)'

Proof. Let JC be a compact subset of fi, containing 2pB \ pB. As noted at the beginning of this Section

QZ(x,y) = $0{x,y) + K2{x,y), (29)

where

\\K2(x, • )||i~(n) + ||Vy/f3(x, • )||L-(n) < C for all x € AC. (30)
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The function K<i{x, • ) satisfies the équation

AK2(xr) = -k2$%(xr) inO, (31)

and therefore

ƒ 9-^rY1My) = f AyK2(X>y)dy
JdpB vvyy) JpB

= -k2 f $%(x,y)dy
JpBpB

= O(p2|logp|), xe2pB\^B. (32)

Using the identity (32) and the bound ||£;||LOO(2PB) < Cll^lltf1^) < C|| /llH1/2(an)5 wemaynow, fora; G 2pB\pB,
write

t
- E{x)) dK

d
2^] às{y) + O(p2\ logp| ). (33)

The individual terms in the last right-hand side may, due to (30), (31) and Proposition 2, be estimated as
follows

(Ep(y) - E(y)) ' • ' » ' ds(y)\ <\-k2 (Ep(y)
QpB ÖVKV) JpB

+ \ f V(Ep(y)-E(y))VyK2(x,y)dy\
JpB

< C\\EP - E\\L2{pB) ( / |$S(x,t/)|2 dy)ï

+ ||V(SP - £)|U2(pB) ( / IV^zCx,»)!2 dy)i
JpB

< Cp2 |logp| + Cp2

<Cp2\\ogp\, (34)

and

™"(%^Ù. ds(y)\ < Cp\\ E{-) - E(x) \\L°o{dpB) < Cp2. (35)
JdpB

Insertion of (34) and (35) into (33) yields

Saa B
p

A combination of this estimate with the décomposition (29) and Lemma 4 leads to the formula stated in the
present lemma. D
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Gonsider the limit of identity (28) as x tends to dpB, If we invoke the well-known jump condition for double
layer potentials (see [6]) we immediately get that

hl + £)Ep{x)-E(x) = (l-£) f

for x on dpB. We also have that

L

dpB
f ds(y)+ O(p2\logp\), (36)

IdpB ut/yy) 2'

for x on dpB. Due to this last identity we may now rewrite (36) as follows

- E(x)) = (1 - f~) jf (Ep(y) ~ E{x))
d$°(x,y

du(y)
ds(y) + O(p2\ \ogp\ ), x G dpB. (37)

Let ^ dénote the vector valued function introduced earlier, ie., the unique solution to

A <f> = 0 in 5 , and in M2 \
0 is continuons across 5 5

_ __

In terms of this function we are now able to prove the following result about the asymptotic behaviour of Ep

on dpB.

Proposition 3. For z on dB:

Ep(pz) - O{p2\\ogp\).

The term O(p2 \ logp\ ) is bounded by Cp2 \ logp|; uniformly in z. The constant C dépends on the the shape of
B and Q, the constants ^u*,e*,cr*; the constants /i°,€0,a° ; the frequency UJ, cfo, and the norm ||/||H1/2(an)-

Proof. By introducing the formula %}? \y-x\* the splitting Ep(y) — E{x) = (Ep(y) -
E(y)) + (E(y) - E(x)) into (37), we obtain

1(1 + £

+ O(p2 |logp|), xedpB.

We now introducé z = x/p and y = y/p. Since

y - x _ 1 y - z
\ y - x \ 2 p \ y - z \ 2 '

(38)
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it follows immediately from (38) that

+ O(p2 |logp|), z e & B . (39)

Since E is in C2 in a neighborhood of pB (with a norm that is bounded by C\\ ƒ ||tfV2(n))

|£(py) - JS(P«) - PV£(O) • (y - z)| < C {/>2\y - z\2 + P
2\z\\y- z\] ,

and so based on (39)

f (i £) j j E A ) E())(i z} 'p9) d«(ü)

+ O(p2 |logp|),

After insertion of the identity

B

[
dB

= - 5 - / v(y)log\z-y\ds(y),2ir JdB

this may be rewritten

(i +

f 4 / "(y) lQg k -
. (40)

Fairly simple manipulations show that 4>\dB satisfies the intégral équation

1 a0 f
-^T^ / ^

Z7r M JdB

, zedB.
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Indeed the uniqueness of <j> guarantees that 0|as is the only solution to the above équation, say, in C°(dB).
Fredholm Theory now implies that the bounded linear operator C°(dB) 3 ip —» (c ̂  L)(ifj) G C°(dB)i given by

fi
±:(1-£) f
zn \x Jo

maps C°(dB) onto C°(dB), and therefore has a bounded inverse.

Multiplying (41) by p-j

iz) = Ep(pz) - E(pz) -

and subtracting it from (40), yields the following équation for

Due to the existence of a bounded inverse for c-\- L \t now follows that

\\Ep{p• ) - E(P• ) - p ^ ( l - 4

which is exactly the resuit of this lemma.

)||co(aB) =

<Cp2|logp|,

Ep(Zj+pz) -

D

Remark. In the case of m (well separated) inhomogeneities Zj + pBj, j — 1, . . . , m, the corresponding
proposition states that for z on dBj

The fonction <f>j is as defined in (9), ie., the same as 0, but with 5 and fx* replaced by Bj and /iJ
? respectively.

6. A N ASYMPTOTIC FORMULA FOR EP — E A FIXED DISTANCE AWAY FROM XP

Just as in the previous section we dérive the asymptotic formula for Ep — E under the simplifying assumption,
that the set of inhomogeneities Tp consists of just a single inhomogeneity of the form pB (containing the
origin). The material coefficients inside pB are referred to as /i*, e* and tr*. (&*)2 dénotes the constant
(/c*)2 = uj2fi*(e* + ï^-)- As before, <&k dénotes the special (free space) fundamental solution forA 4- fc2, given
by

Repeated use of Green's formula leads to the following intégral représentation of Ep(x) — E(x), for points
x G

f

Ep{x)-E{x) = ƒ (y))^(x,y)ds(y) (42)
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Using the jump condition ( ̂ (y) ) + = j£( ^f(y) )", y e dpB, we calculate

The représentation (42) may thus be rewritten

y), (43)
pB

x E £1 \ pB. Proposition 3 from the previous section now allows us to find the exact asymptotic behaviour of
the last two terms of this représentation.

Lemma 6. For any fixed x £M? \ pB we have

f Ep(y) $k(x, y) ds(y) = pHk(x, 0)\B\E(0) + O(p3~s),
JpB

and

/ Ep(y) ^ às(y) = p2Vy$
k(x,0) • M(^)VE(Q) - p2k2$k(x,0)\B\E(0) + O(p3~5).

JdpB dv(y) ji

The polarization tensor is as defined previously, i.e.,

M(^) = \B\I-\- (̂ r -
M0 ^ ' JÔB

Given any fixed 6 > 0, and any fixed compact subset /C C M2 \pB, with dist(/C, 0) > do/2, there exists constants
C such that the remainder terms, as well as their derivatives, are bounded by Cp3~ô, uniformly with respect to
x G K. The constants C depend on Ö, JC, the shape of B and Q, the constants /i*, e*, a*, the constants /i°, e°, a0,
the frequency ÜJ, do, and the norm

Proof. Since Q is a bounded, smooth domain in R2, Sobolev's Imbedding Theorem gives

\\EP - E\\LP{n) < C\\Ep - E\\m{Çî) for any 1 < p < oo,

where C dépends on Q and p only. Proposition 2 therefore asserts that

\\Ep-E\\LP{Q)<Cp.

This immediately leads to the estimate

(Ep(y) -E{y))$k(x,y)dy\ < C\\EP - E\\LP{Q) (p2)V .
pB
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for any flxed x G M 2 \ pB. We may choose p = | ( - r = l — | ) , in which case

f (Ep(y)-E(y))<ï>k&y)ày\<CpZ-5.
JpB

Due to the interior smoothness of £"(•), and the fact that x is fixed and outside pB

f
JppB

A combination of (44) and (45) yields

(44)

(45)

f
JppB

the fixst of the identities in this lemma. It is easy to see that the remainder O(p3~5 )(x) is bounded by Cp3~ô,
uniformly on the compact subset AT (which satisfies dist(/C, 0) > do/2). Since O(p2>~6 )(x) clearly satisfies
(A + k2)O(p3-s ) = 0 in R2 \ ~pB, and since O(p3"6 )(x) is bounded by Cps~s, uniformly on (any) /C, standard
interior elliptic estimâtes immediately show, that similar bounds hold for all the derivatives of O(p3~s )(x).

We now turn our attention to the second identity. From the Divergence Theorem

f E(y)
JdpB JpB

~k2 f E{y)
JpB

for x G M2 \ pB, Since E is in C2 in a fixed neighborhood of pB, and since x is fixed and outside pBy this
immediately yields

As a conséquence we have

/
dpB

/
dpB

- E(y)) ^ ^ ds(y) +p2Vy<èk(x,0)

(46)

Prom Proposition 3 we get

f (Ep(y) - E(y))
JdpB

ds{y) = p f {Ep{py) - E{py))Vy$
k{x, py) • u(y) ds(y)

JdB

= p2 f ( ^ - l)4>(y) • VE(0) VyZ
k(x,py) • v{y) às{y)

JdB M

+ p f O{ p21 log p\ )V^fe (x, py) • u{y) ds(y)
JdB

= p2 f ( ^ - \)4>{y) • VE(0) Vy$ fe(x, py) • u(y) ds(y)
JdB M
O(p3|logp|), (47)
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for any fixed X G R 2 \ pB. For such a point x we also have

Vy$
k(x,py) = Vv$

k(x,0) + O{p), y e dB,

and (47) thus gives

f
Jd

(Ep(y) - E(y))d^{*\y) ds(y) = p2 ( ^ - l)V^fc(x, 0) • { [
dpB uHV) M JdB

for any fixed Ö > 0. This vérifies the second identity of this lemma. It is easy to see that the remainder
O(ps~ô )(x) is bounded by Cp3~^, uniformly on the compact subset /C, (which satisfies dist(/C,0) > do/2).
The bounds for the derivatives of the term O(p3~ô) follow by the same (interior elliptic estimate) argument as
before. Ü

Proof of Theorem 1. An application of Lemma 6 to (43) leads to the following asymptotic représentation
formula

Ep(x)-E(x) = J^^(y) - ^ ( y ) ) &(x,y)d8(y) + P" (^ - £)V y*" (x, 0) • M (£)V E{0)

- e*+ ia°~a*)^k(x,0)\B\E(0)+ O(p3-5 ) , (48)

for any fixed x G Q\ pB. We note that the term O(ps~s ), and ail its derivatives, are bounded by Cp3~5,
uniformly with respect to x satisfying dist (a:, diï) < do/2. We may extend the outward normal field to dft to a
small neighbourhood inside S7 and apply the operator Q^X\ to both sides of'(48), the resuit being

( 4 9 )

By means of an argument identical to that used for <1?Q, it is not difncult to show that

$\x,y) = $°(x,y)+K3(x,y),

where K% is in C°°(M2 x Ë 2 \ {(x^y) : x = y}), and K% furthermore satisfies the estimate

for any compact set KL C M2. From these properties of K3 it follows immediately that boundary intégrais
involving the potential %}^\ exhibit the same jump relations as those involving %}?J\ = ~ ^ Ü-Vp
(the normal derivative of a standard single layer potential). For more details on this point we refer the reader
to [6], page 47. In particular, by letting x tend to a limiting point on dVLy we obtain from (49)

l(dEp ,_d£, ,\ f fdEo, , dEJ
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for any x G 9£1 For any fixed S the term O{ps~s) is bounded by Cps~s uniformly in x. The constant C
dépends on <5, the shape of B and ü, the constants ^*,e*,<7*, the constants /io,e°,c7o, the frequency o;, do, and
the norm ||ƒ\\H1/2(ÔQ)- SO ̂ ar w e n a v e assumed that ƒ is in CTl'a(9n) to insure that ~^f- and ^ are continuous
functions on d£l. We notice, however, that even if ƒ is only in i?1/2(ô^), the différence Ep - E is infmitely
smooth near and up to dü (this follows from elliptic regularity results, and the f act that Ep - E vanishes on
dSl). The différence -^f- — ̂  is therefore also infinitely smooth near and up to dn. By a limiting argument
(using the density of Cl>a(dQ) in Hl/2(dQ)) it easily follows that the last formula remains valid under the
(weaker) condition that ƒ is in üT^^öfÏ). This vérifies Theorem 1 in the case of one inhomogeneity. As already
mentioned earlier, the gênerai case is verified essentially by an itération of this argument. We leave the details
to the reader. D

Remark. We could equally well start with fixed Neuman boundary conditions for Ep and E, say -\J^EP =
-\-j^E = g on dfl. The goal is then to dérive an asymptotic représentation formula involving (Ep — E)\QQ.

Instead of (42) we now have

Ep(x) - E(x) = -
/ C\f\ t t IS 1 'II I

(50)

As long as the boundary conditions for Ep and E are fixed, and identical, it does not matter whether they be
Dirichlet or Neumann, as far as our asymptotic analysis of the behaviour near the inhomogeneities is concerned.
That is to say, the preceding analysis (from Sects. 4 to 6) immediately car ries over; at the appropriate places
we just replace the Dirichlet-fundamental solution 3>Q with the corresponding Neumann-fundament al solution
$o> defined by

f
l

(A + A:2)^(x,-) =-Sx in Q,
^ r , - ) = 0 on dfi

Remember, in this case we suppose —k2 is not an eigenvalue for the Laplacian with homogeneous Neumann
boundary conditions. From (50) we now arrive at

Ep(x)-E(x)=- f (Ep(y) - E(y)) d**j*>V} ds(y) +P
2(l - 4)v y ^(^ ,0) • M(Ç) V£?(0)

JQÇI ov\y) \ \i / \[i /

- A ; V fe° - €* + i°—^-\ $fe(x, 0) \B\ E(0) + O(p3-6 ),

for any fixed x in fl \ pB. As before, we may take the limit of this représentation as x converges to a point on
9Q, to finally get

l(Ep(x)-E(x))+ f (
1 JdQ,

-e*+ ^ t 7 ° ~ ( 7 ) $k(x,0) |B| E(0)
Lü /

x ^ dn. This provides a proof of the représentation in Theorem 2, for the case of one inhomogeneity. The
pro of for any fixed number of well separated inhomogeneities follows (as before) essentially by itération of the
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argument just presented. The statements about the remainder term O( ps~â ) are as in Theorem 1, except that
the norm || ƒ \\Hi/*(dn) i s replaced by the norm \\g\\H-i/2(dn)-

7. DISCUSSION

As mentioned earlier, we expect that the asymptotic formulas of Theorem 1 (or Theorem 2) will serve as
very useful tools for the (numerical) reconstruction of the "location" and "size" of the inhomogeneities. If for
instance the electric field, Ep is prescribed on dû (= ƒ), and the rescaled magnetic field -^f is measured on
<9£7, then the function

may be considered a measured datum on <9Q (the constants /^°, e°, and a0 are assumed to be known, and we
may easily compute E). From the asymptotic formula in Theorem 1 it now follows that, up to terms of smaller
order, we are in possession of the values of the (boundary) function

\B3\E{Zj). (51)

A first task of the identification process, is then to détermine (as well as possible) the number of "pôles" ("cen-
ters" of inhomogeneities) z3) and their locations. A second task would be to détermine other information about
the inhomogeneities, such as their sizes, and/or other "geometrie" and "parametric" information. Disregard-
ing the magnitude of the involved constants, the formula (51) suggests that inhomogeneities with permittivity
or conductivity different from that of the background will be easier to "locate" based on TE electromagnetic
boundary data, than will inhomogeneities where only the permeability differ (the decay away from x = Zj is
more rapid for the first term than for the second). TM electromagnetic data reverse this situation. We are
indeed currently in the process of experimenting with numerical reconstructions. To assess the practical use-
fulness of our approach, we use values for the piecewise constant coefficients that are characteristic of actual
materials, such as soil, metals and plastics, and we use frequencies that are characteristic of fairly standard
radar devices. A detailed account of this work will be the subject of a fortheoming paper.

We have based our asymptotic formulas on the free space Green's function <Ê>fc, given by the formula

As the reader will notice, we have never used the particular properties of this function at oo (it satisfies the
so-called Sommerfeld radiation condition) and indeed, we might just as well have used any other free space
Green's function for the operator A + k2. If anything, our reason for choosing <Ê>fe(:r, y) is its status as somewhat
of a "standard" Green's function for the operator A + k2. We also note that due to the knowledge of a rapidly
convergent series représentation for HQ\ the function $k(x,y) = ^HQ(IC\X — y\) is in a sense just as explicit
as say the Green's function $°(x, y) = —^ log \x - y\ for the Laplacian.

The formula from Theorem 2 would be used when the boundary magnetic field ̂ f f is prescribed, and the

boundary electric field Ê\QQ is measured. In practice it may be unnatural to distinguish between measured
and prescribed data, since in a sense they will both be measured. It would then be natural to consider the
datum, which is measured most accurately, as the prescribed datum, use this as the basis for the calculation
of the "background" field (E or Ë) and then use the corresponding expression (from Th. 1 or Th. 2) for the
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reconstruction process. We note that the expression from Theorem 2 only involves oiie dérivâtive of $ - if
anything, this may rAake it slightly simpler to compute with.
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