Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 4, p. 723-748
@article{M2AN_2000__34_4_723_0,
     author = {Vogelius, Michael S. and Volkov, Darko},
     title = {Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {4},
     year = {2000},
     pages = {723-748},
     zbl = {0971.78004},
     mrnumber = {1784483},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_4_723_0}
}
Vogelius, Michael S.; Volkov, Darko. Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 4, pp. 723-748. http://www.numdam.org/item/M2AN_2000__34_4_723_0/

[1] H. Ammari, S. Moskow and M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. Preprint, Rutgers University (1999); Inverse Problems (submitted).

[2] P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1971). | MR 443383 | Zbl 0228.47001

[3] L. Baratchart, J. Leblond, F. Mandréa and E.B. Saff, How can meromorhic approximation help to solve some 2D inverse problems for the Laplacian ? Inverse Problems 15 (1999) 79-90. | MR 1675335 | Zbl 0921.35187

[4] J. Blitz, Electrical and Magnetic Methods of Nondestructive Testing. IOP Publishing, Adam Hilger, New York (1991).

[5] D. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | MR 1629995 | Zbl 0916.35132

[6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Krieger Publishing Co., Malabar, Florida (1992). | Zbl 0522.35001

[7] D. Dobson and F. Santosa, Nondestructive evaluation of plates using eddy current methods. Internat. J. Engrg. Sci. 36 (1998) 395-409. | MR 1620127

[8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York (1983). | MR 737190 | Zbl 0562.35001

[9] D. Griffiths, Introduction to Electrodynamics, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey (1989).

[10] F. Gylys-Colwell, An inverse problem for the Helmholtz equation. Inverse Problems 12 (1996) 139-156. | MR 1382235 | Zbl 0860.35142

[11] J.D. Jackson, Classical Electrodynamics, 2nd Ed., Wiley, New York (1975). | MR 436782 | Zbl 0997.78500

[12] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. II. Interior results. Comm. Pure Appl. Math. 38 (1985) 643-667. | MR 739921 | Zbl 0595.35092

[13] M. Lassas, The impedance imaging problem as a low-frequency limit. Inverse Problems 13 (1997) 1503-1518. | MR 1484001 | Zbl 0903.35090

[14] N.N. Lebedev, Special Functions & Their Applications. Dover Publications, New York (1972). | MR 350075 | Zbl 0271.33001

[15] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143 (1996) 71-96. | MR 1370758 | Zbl 0857.35135

[16] P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. | MR 1224101 | Zbl 0804.35152

[17] A. Sahin and E.L. Miller, Electromagnetic scattering-based array processing methods for near-field object characterization. Preprint, Northeastern University (1998). | Zbl 1064.78506

[18] E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations. J. Comput. Appl. Math. 42 (1992) 123-136. | MR 1181585 | Zbl 0757.65128

[19] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986) 91-112. | MR 820341 | Zbl 0611.35088

[20] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125 (1987) 153-169. | MR 873380 | Zbl 0625.35078

[21] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London (1962). | JFM 48.0412.02 | MR 1349110 | Zbl 0174.36202