@article{M2AN_2000__34_4_723_0, author = {Vogelius, Michael S. and Volkov, Darko}, title = {Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {723--748}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {4}, year = {2000}, mrnumber = {1784483}, zbl = {0971.78004}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_4_723_0/} }
TY - JOUR AU - Vogelius, Michael S. AU - Volkov, Darko TI - Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 723 EP - 748 VL - 34 IS - 4 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_4_723_0/ LA - en ID - M2AN_2000__34_4_723_0 ER -
%0 Journal Article %A Vogelius, Michael S. %A Volkov, Darko %T Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 723-748 %V 34 %N 4 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_4_723_0/ %G en %F M2AN_2000__34_4_723_0
Vogelius, Michael S.; Volkov, Darko. Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 4, pp. 723-748. http://archive.numdam.org/item/M2AN_2000__34_4_723_0/
[1] Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. Preprint, Rutgers University (1999); Inverse Problems (submitted).
, and ,[2] Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1971). | MR | Zbl
,[3] How can meromorhic approximation help to solve some 2D inverse problems for the Laplacian ? Inverse Problems 15 (1999) 79-90. | MR | Zbl
, , and ,[4] Electrical and Magnetic Methods of Nondestructive Testing. IOP Publishing, Adam Hilger, New York (1991).
,[5] Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | MR | Zbl
, and ,[6] Integral Equation Methods in Scattering Theory. Krieger Publishing Co., Malabar, Florida (1992). | Zbl
and ,[7] Nondestructive evaluation of plates using eddy current methods. Internat. J. Engrg. Sci. 36 (1998) 395-409. | MR
and ,[8] Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York (1983). | MR | Zbl
and ,[9] Introduction to Electrodynamics, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey (1989).
,[10] An inverse problem for the Helmholtz equation. Inverse Problems 12 (1996) 139-156. | MR | Zbl
,[11] Classical Electrodynamics, 2nd Ed., Wiley, New York (1975). | MR | Zbl
,[12] Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. II. Interior results. Comm. Pure Appl. Math. 38 (1985) 643-667. | MR | Zbl
and ,[13] The impedance imaging problem as a low-frequency limit. Inverse Problems 13 (1997) 1503-1518. | MR | Zbl
,[14] Special Functions & Their Applications. Dover Publications, New York (1972). | MR | Zbl
,[15] Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143 (1996) 71-96. | MR | Zbl
,[16] An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. | MR | Zbl
, and ,[17] Electromagnetic scattering-based array processing methods for near-field object characterization. Preprint, Northeastern University (1998). | Zbl
and ,[18] A linearized inverse boundary value problem for Maxwell's equations. J. Comput. Appl. Math. 42 (1992) 123-136. | MR | Zbl
, and ,[19] A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986) 91-112. | MR | Zbl
and ,[20] A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125 (1987) 153-169. | MR | Zbl
and ,[21] A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London (1962). | JFM | MR | Zbl
,