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ERROR CONTROL AND ADAPTIVITY FOR A PHASE RELAXATION MODEL

ZHIMING CHEN1 , RICARDO H. NOCHETTO2 AND ALFRED SCHMIDT3

Abstract. The phase relaxation model is a diffuse interface model wit h small parameter e which
consists of a par abolie PDE for température 6 and an ODE wit h double obstacles for phase variable x*
To découplé the System a semi-explicit Euler method with variable step-size r is used for time dis-
cretization, which requires the stability constraint r < e. Conforming pieeewise linear flnite éléments
over highly graded simplicial meshes with parameter h are further employed for space discretization.
A posteriori error estimâtes are derived for both unknowns 9 and x> which exhibit the correct asymp-
totic order in terms of e, h and T. This resuit circumvents the use of duality, which does not even apply
in this context. Several numerical experiments illustrate the reliability of the estimators and document
the excellent performance of the ensuing adaptive method.
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1. INTRODUCTION

Let Q C Rd(d = 1,2,3) be a bounded convex polyhedral domain, F — 9f2, and QT = 0, X (0,T) for some
0 < T < +oo. Given a small parameter e, we consider the phase relaxation model of Visintin [18,19]

dt6 + dtX-A6 = f in QT, (1.1)

edtX + Mx) 3 0 m QT, (1.2)

subject to the parabolic boundary conditions

0 = 0 o n T x (0,T), (1.3)
0(-,O)=0o(-). x(-,0)=xo(0 in fî. (1.4)

Hère 6 stands for the température of a substance that occupies the domain f£ and undergoes solidification, %
is the phase variable (or order parameter), u = 0 + x is the enthalpy, and A is the inverse of the sign function,
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adaptivity.
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namely, the following maximal monotone graph

A(s) =

[-oc^O] ifs = - l ,

O if - 1 < 5 < 1, (1-5)

[0,+oo] ifs = l.

This graph A forces x t o be within ±1, the obstacles. Liquid and solid phases are determined by the coincidence
sets where either ^ = 1 or x = — 1, respectively. The remaining non-contact set is the so-called transition région,
where the phase change takes place. The thickness of such a région is O(y/ë) for smooth évolutions, as dictated by
the behavior of ld traveling waves [12], This model allows for 6 to exhibit values above the melting température
in the solid phase (super-heating) and below in the liquid phase (under-cooling). This simple model however
does not exhibit surface tension effects.

This paper introduces, analyzes and tests an adaptive finite element method for (Ll)-(1.4) based on
a posteriori error control. The issue at stake is the strong nonlinearity hidden in A that prevents duality
techniques to apply in the present context. Duality hinges on linearization, and has been systematically used to
dérive a posteriori error estimâtes for par abolie problems, both linear [5,7] and mildly nonlinear [6]. It has even
been employed for the simplest model of liquid-solid phase change, namely the Stefan problem [15]. The analysis
of [15], which is strikingly different from those of [5-7] already hints at the limitations of duality in dealing
with strong nonlinearities. The new difficulty posed by the above model is the lack of Lipschitz regularity of A.
This is an essential feature that cannot be overcome by regularization, since in that case x must be updated
in the entire ft instead of a narrow transition région; this is indeed a major advantage of the double obstacle
formulation. Moreover, the regularization error should be accounted for a posteriori^ which is problematic.

A new technique has been recently introduced in [13,14] for implicit time stepping of nonlinear évolution
équations for sub different ial operators which are not necessarily smooth. This is the case of our System, since
A = d<& is the subdifferential of the proper, lower semi-continuous, and convex functional $ : M - > l U {+00}

, 0 if si < 1,
* (* )=< f ~ (1-6)

+00 otherwise;

see Section 4.2 for details. In this paper we study the semi-explicit method of [16,17] for time discretization,
combined with conforming P1 finite éléments for space discretization, which are discussed in Sections 3.1 and
3.2 respectively. We establish a posteriori error estimators for both the semi-discrète scheme in Section 4.2
and the fully discrete scheme in Section 4.3, and state that the former are optimal with respect to both rate
of convergence and regularity requirements in Section 4.2. Full proofs are given in Sections 5 and 6. We also
present several numerical experiments in Section 7 that document the efficiency and robustness of the ensuing
adaptive method, which handles topological changes automatically.

In contrast to [11], which uses a priori information for mesh design, the present paper is entirely based on
a posteriori error estimation. Instrumental to this goal is an interpolation operator which extends a node-wise
relation stemming from the discretization of (1.2) to the whole domain, but does not cause additional error
contributions in the discrete coincidence région; similar ideas were previously used in [11]. The importance
of this property is evident in practical applications of error control since unnecessary mesh refinement should
always be avoided in the discrete coincidence région.

A new positivity preserving interpolation operator has been recently introduced in [1] for a posteriori error
estimation of elliptic obstacle problems. This operator, in conjunction with ideas in this paper, constitutes the
basis for mesh design and analysis of adaptive methods for diffuse interface models [2].
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2. SETTING

) , V* = tf~a(fi)bethedualspaceofV, andW = L2(^). Let/C = {<p£ W: \<j>\ < 1 a.e. on Q}
be a (convex) set of admissible fonctions. The data satisfy the following hypotheses (weaker ones are needed in
Sects. 4.2 and 5):
(Hl) Initial température: || 90 \\wi,°°m\ < C.
(H2) Initial phase variable: xo € JC n C(Ü).
(H3) Compatibility condition: |[ÖQ — ^O||L2(Q) ^ ^V^ with zo £ A(Xo) given by

(90-max(Ö0)0) if xo = - 1 ,

0 if - 1 < xo < 1

0o-min(0o,O) if Xo = 1-

(H4) Source term: ƒ G W^l(0,T\C(Ü)).
The compatibility condition (H3) penalizes the lack of satisfaction of 0Q € A(xo) as well as the thickness of

the initial transition région T(0). If

T(t) = {x G Çl : \X(x,t)\ < 1}

dénotes the transition région, its thickness is O(yfe) for smooth. solutions as revealed by the analysis of traveling
waves [12].

The weak formulation of the problem (1.1)-(1.4) reads as follows: Find 6 and %

XeH^O^T;!

and for a.e. t G (0,T) the following relations hold

(f,(t>) v<fiev, (2.1)
,X-V)<{6,X-<P) V <p G /C. (2.2)

Hereafter, u := 0 + x, and {-, •) stands for either the inner product in L2(£7) or the duality pairing between
H-l(fl) and H^(ft).

In view of (Hl-4) the following a priori estimâtes are valid uniformly in e:

II 0 \\L°°'{0tT;Hi(Cl)) + V l̂l ft^ II £,̂  (O^;^2 (O)) + || ̂  ||iyi (0,T;L2(Q)) < C (2-3)

3. DlSCRETIZATION

In this section we discuss the time discretization, which découplés the variables 9 and x, as well as the space
discretization by finite éléments.

3.1. Time discretization

We now introducé the semi-explicit scheme of Verdi and Visintin for solving (2.1)-(2.2) [16,17]. Let rn be
the nth time step and set

1 = 1
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for any function ip continuous in (tn~l,tn]. Let N be the total number of steps, that is tN > T. The semi-
discrète problem then reads as follows: Given 0° = 0Q and X° = xo, find 0 n 6 V,Xn G /C, Ï7n e W /or
1 < n < N such that

X n — Xn~

! U ~ U \ n n

\ Tn ' /

where Un =• Qn + Xn. We notice that (3.1) is merely an algebraic correction for Xn in terms of Qn~1 and X71"1,
which découplés from the linear elliptic PDE (3.2) for B n . The price for this appealing feature is the stability
constraint rn < e. We point out that (3.1) may be replaced by the equivalent équation

£ /X w -X" X
\ + { z n M = ( e n- l > y ) ) V v , e L2{Q) ( 3 3 )

Here Zn G A(Xn) may be viewed as a Lagrange multiplier associated to the unilatéral constraint |Xn| < 1.
In contrast to (3.1), the implicit time discretization

X n -X ra-l

, X n - <p) < (Qn, X n - <p) Vip e /C, (3.4)

does not suffer from any stability constraint but leads to a coupled system. Both methods are studied in [10] for
constant step-size. In Section 4.2 we state a posteriori error estimâtes for (3.1)-(3.4) along with their optimal
asymptotic rate, and prove them in Section 5. In addition to providing computable error estimators, these
results simplify and extend the error analysis of [10] to variable step-sizes.

3.2. Space discretization

We now combine the semi-explicit method of Section 3.1 with conforming piecewise linear finite éléments in
space.

We dénote by A4n a uniformly regular partition of O into simplexes [3]. We use refining/coarsening procedures
based on bisection, which lead to compatible consécutive meshes; this is a major différence with the method
proposed in [11]. Given a triangle S G M.n, hs stands for its diameter and ps for its sphericity and they satisfy
hs < 2ps/sin(7s/2), where 75 is the minimum angle of S. Shape regularity of the family of triangulations is
equivalent to 75 > 7 > 0, with 7 independent of n. We dénote by Bn the collection of interior inter-element
boundaries or sides e of Ain in fl\ he stands for the size of e € Bn.

Let Vn indicate the usual space of piecewise linear finite éléments over Mn and V^ = Vn Pi V. Let {x^}f2\
dénote the nodes of Mn. Let In : C(Ù) —* Vn be the usual Lagrange interpolation operator, namely (Inip)(x^) =
<p{x™) for ail 1 < j < Kn\ Finally, let the discrete inner products {-, -)n be defined by

f F

for any piecewise uniformly continuous functions <p, tp. This vert ex quadrature rule is easy to évaluât e in
practice [3]. It is known that for any S e Mn [3,15]

<ptl>dx - J In{^)dx\ < iftlH V^||L2(5)| | V^ \\LHS) \/cp^e Vn. (3.5)

Let 6° := J°ö0 and X° := I°XOJ which makes sense in view of (Hl) and (H2). Then the fully discrete finite
element approximation reads as follows: Given O71"1 G VJ1"1, X71"1 e V71"1 and Zn~x e V n " \ then Mn~l and
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rn_x are modified as described below to give rise to M.n and rn and thereafter Qn G VQ^X71 G Vn and Z71 G V71

computed according to the following prescription

e(Xn " IUXn , lp)™ + (Zn, <p)n = (Inen-\ ip)n V(^€V n , (3.6)

f/" _ jnjjn—l
^ •*• v \ ir—i /~\>n_ \—7 \ / T<n. frt \ n \ / _ •* in. /Q r7\

with Un := 0 n + Xn and Zn(xri) e A(Xn(x^)) for 1 < j < Kn.
We note that (3.6) is a simple and inexpensive node-wise algebraic correction which computes Xn and Zn

in terms of Gn = 1 and Xn~1. In fact, (3.6) can be rewritten explicitly as

— (Xn(x^) - Xn'1{x^)) + Zn(x]) - On~l{x]) = 0 V 1 < j < Kn, (3.8)

or equivalently as

Xn{x%) = (I - (3) Ç^^O71-1 + rX71'1^ (x^) V 1 < j < Kn, (3.9)

where j3(s) = min(s + 1,0) + max(s — 1,0) and / is the identity. Once Xn is computed, then Zn can be obtained
node-wise from (3.6). On the other hand, (3.7) can be rewritten equivalently as

(en, <p)n + rn(ven,vtp) = (re71-1 - xn + n ^ 1 + rnrp, ^)n v ̂  e i#. (3.10)

This is a linear positive definite symmetrie System in the unknown On, which can be solved efficiently by the
conjugate gradient method with BPX preconditioner for instance.

It is crucial to extend the node-wise relation (3.8) to the entire domain Çl while preserving monotonicity
properties. The key issue is to capture the'different behavior of Qn and Xn within the transition régions Tn

and outside, where

Tn = {xeQ: \Xn(x)\ < 1}. (3.11)

Since Xn e JCn is pieeewise linear, the closure of Tn is a union of simplices. We thus introducé the operator
pn :yn _^ £00 (Q) defined element-wise as follows: for any (p E Vn and 5 G Mn with vertices { a ^ } ^ 1 and

bary cent rie coordinates {A*}^1, define

{ v\s if

(xj(i) )Xi otherwise,

where %% ^s t n e characteristic function of the polyhedral set

Si := {x € S : Xi(x) > Xi(x), l ^ i}.

It is now easy to see that PnZn e A(PnXn) a.e. in Q and that (3.8) is equivalent to the global relation

pn vn m pnf rn vn—l\
£ ± y1 L + pnZn _ pn(J"0n-l) = Q a . e . in Çl. (3.13)
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Moreover, there exists a constant C, depending only on the minimum angle of the mesh Mn
i such that

\\Pnv\\LHn)<C\\tp\\L,{n) V ^ f , (3.14)

II Pn<P ~ V Wma) < C\\ hnV<p \\L2{rn) V ^ e V n . (3.15)

3.3. Residuals

We define the interior residual

Un - I^U71'1

along with the jump residual across e G Bn

[VGn] := (VepSl -

using the convention that the unit normal vector ve to e points from S2 to Si. We observe that intégration by
parts yields

Moreover, if A is a union of éléments in A4n and Bn(A) is the set of edges interior to A, and k G M, we set

VipeL2(n), (3.17)
SCA

J2 ^ f c | ) 1 / 2 . (3.18)
eeB™{A)

4. A POSTERIORI ERROR ESTIMATES

In this section we state the a posteriori error estimâtes for the schemes of Sections 3.1 and 3.2. Proofs are
given in Sections 5 and 6.

4.1. Error représentation formula

We start with a représentation of the error for any approximation of {#, x?u}

{0 n ,X" ,U n } e V xJC x W

at time t = tn. The ensuing formula will play a fundamental role later.
We dénote by £(t) the piecewise linear function

£(t) := f—^ V tn_x <t<tn.

Given a séquence {VFn}^=1 G W we indicate with W and W its piecewise linear and constant interpolants,
namely, W(-,0) - W{-,0) := W°{-) and for all t n _i <t<tn

(4.1)
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Let G : V* —» V be the Green operator defined by

{VG& Vv) = (<t>, v) VuGV,^€V*. (4.2)

We tlrst rewrite (2.1) as

(dt(u - U), 4>) + (V(0 - 0 ) , V0> = (ƒ - <9tU, 0) - <V0, V<£) V </> € V.

Upon taking 0 = G(u — U) e V, we get

~ | | u - U fH_1(n) + (fl - ë , « - U> = <ƒ - ftU, G(« - U)) - <V0, VG(n - U)>. (4.3)

Next we rewrite (2.2) as

We introducé the error function

( ) - ê | | 2
L 2 ( n ) , (4.5)

and note that a simple algebraic calculation yields

<0 _ ê,0 - e> = 5(0; e) - 1 | | © - e

Upon adding (4.3) and (4.4), and integrating in time from 0 to t* < T, we easily obtain the desired error
représentation formula

| | | (u - U)(t*) ||2„_1(n) + j * S{9; <3>)dt + | | | (x - X)(t*

II © " ö \\h(n)dt + (Ö - 0, U - (X + 0))d£ (4.6)

f ((f - dtV, G{u - U)) - (V0, VG(u - U)))di
Ja v '

f -
7 o

We conclude that evaluating the various terms in (4.6) in suitable Soboiev norms would yield a computable
error estimate solely in terms of discrete quantities and data. The fourth term on the right-hand side of (4.6)
vanishes provided U — 0 -f- X, which is not assumed in this dérivation.

4.2. Time discretization

We first state a posteriori error estimâtes for the scheme of Section 3.1, and then their optimal rate of
convergence. Proofs are given in Section 5.

If the Hubert space V* x W is endowed with the scalar product
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then (1.1)-(1.2) can be written equivalently as dt (u, x) +#(w; x) = ( ƒ > 0) m terms of the (multi-valued) monotone
operator # : V* x W —> V* x W given by

- (« - X)) 5

S' is the sub-gradient of the convex lower semi-continuous potential [9,18,19]

Therefore the abstract theory of a posteriori error analysis of [13,14] app.lies directly to the implicit method
(3.4), thereby giving an upper bound in terms of the computable monotonicity residual (use that Un — 0 n +X n )

1),X"-X"-1). (4.9)

Theorem 4.1. The following a posteriori error estimâtes are valid

f ö(9;e)dt
JQ

N

, A - X }) (4.10)

+ 4 ( /

N rtn

( E / •
71=1 n — l

for the semi-explicit method (3.1)-(3.2). The third term on the right-hand side can be omitted for the method
(34).

We now stress that the first two terms in (4.10) correspond to (4.9). In particular, the second term captures
the essence of the variational inequality for phase variable. Since Zn = 0 within T n , and Tn does not change
too abruptly, such a term vanishes in most of the domain fi. The third term on the right-hand side of (4.10) is
due to the explicit treatment of température in (3.1).

The quantity <S(0, 0) arises from the coercivity of the first component of # in V*, whereas the second com-
ponent of # is not coercive and thus contributes nothing to the error. This is consistent with [13,14].

Our next objective is to show that the a posteriori error estimators in Theorem 4.1 are optimal with respect
to both order and regularity requirements. It is obvious that the last term at the right hand of (4.10) is of
optimal order

n = 1 Jt"-1

provided ƒ £ iJ1(0,T; H=~1(fl)) and r := maxi<n<jv rn is the largest time-step. It remains to estirnate the first
two terms on the right hand of (4.10), which is possible under weaker assumptions than (H1)-(H4).

Theorem 4.2. In addition to (H3)} let 9o and ƒ satisfy

il #o lltfj(fi) ^ C*) II ƒ \\wl>i{o,T;H-i{n)) < C*. (4-12)
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There exists a constant C depending on C*,T and A in (ES), but independent of rn and s, such that the
foîlowing a priori estimâtes are valid provided the stability constraint rn < e is enforced for ail 1 < n < N

N

J2 —(|| Qn - G""1 |||2(n) + (Zn - Zn~\Xn - Xn~1)) < C. (4.13)
n=l T n

The compatibility assumption (H3) is equivalent to requiring that (UQ,XO) belong to the domain of $ uniformly
in €. Such a regularity is also used in [13,14] to prove optimal rates of convergence in an abstract setting.

Corollary 4.1. If (ES) and (4-12) hold, then there is a constant C depending on C*,T and A in (ES), but
independent of rn and e, such that

a T \ i/2 r

ô(6',e)dt) <C^ (4.14)

provided rn < e for ail 1 < n < N. The rate of convergence becomes O(r) for (3.4).

Proof To dérive (4.14), it suffices to apply Theorem 4.2 together with the Cauchy-Schwarz inequality to esti-
mate the last term in (4.10). n

The rate of convergence (4.14) is optimal according to the semi-discrète traveling wave solution of [12]. Similar
rates were derived in [9] but the present argument is simpler and also more intrinsic.

4.3. Space discretization

We first define the error functions eu := u — U} ex := x ~ PX, where P is the interpolation operator of
(3.12). Our goal is to establish a fully discrete version of Theorem 4.1.

Theorem 4.3. Let rn < C#rn_i for ail 1 < n < N with C# > 0 arbitrary. Then there exist constants C > 0
depending solely on the minimum angle of Mn and C # such that the foîlowing a posteriori error estimate holds
for ail tm G [0,T];

f / S(0]Q)dt)
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where the error indicators Si are given by

£Q := || Uo - U° | |H-i (n) + £1/2\\ Xo - P°X° | |L 2 ( n ) initial error,
TH, - /<-. TTL

fi:=(ET"He"-jnen"1
71 = 1

L1/2

time residual,
n= l

m

S2 := > rn | | | / i^[Ven ] | | | i 2 r m + e " 1 ^ > rn | | |/i^[Ven]|||La(n) jump residual,
n=l n=l

1/2
intenor residual,

n—1
m n

n—l
m m

\ A il Tjri-1 __ jnjjn~l \\ ± \ £lf2 \ ^ II pn/jnj^n-l\ _ pn —lĵ n—1

n=l n=l

rn|| Qn ~ InQn \\L2(n) ) coarsening,
"n=l

1/2

transition layer,

source discretization.

Remark 4 .1 . The estimators E\ and £7 are consistent with those in (4.10). The remaining estimators reflect
the effect of space discretization.

5. PROOF OF THEOREM 4.1 AND 4.2

5.1. Proof of Theorem 4.1

We use the crucial estimate (4.6). Let O n ,X n , t / n be the solutions of (3.1)-(3.2), and set 0 n = 6 n , X n =
Xn, XJn ~ Un. Consequently, the fourth term on the right-hand side of (4.6) vanishes. From (3.2) we know that

{ƒ - dtU, G(u - U)) - (Vë, VG(u - U)) = (f~ A G(u - U)).

Rewri t ing (3.3) as Zn = en~l - edtX we deduce for t n - 1 <t<tn t h a t

(Ö - edtX,x- X) = (Qn - Qn~\x- X) + (Zn,x - X)
fC\ri fàn—l Y*\ _L /7n •>>- Vn\ _L fr7n V n V\

— \t? — Ky )X — -A ) -f" [ZJ )X — -^ / ~ r \ / j , A ~ A /

^ (0 — 0 n ,x — X) -{- ÇZi ,X — ^ } ,

where we have used the fact that Zn G A(Xn) and \x\ < 1 to conclude that

$ being the primitive of A defmed in (1.6). Now inserting the above estimâtes into (4.6) for t* E (tm~l
}t

m]
with 1 < m < N and noticing that

en - e = £(t)(en - e^1), xn - x = £(t)(xn - x71"1),
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as well as that

\L , X — X ) < <P{X ) — <P(X ) = 0,

we finally obtain with t™ — min(tn, t*)

i ^ ft*

O l l \ ™ V / V J Utt-i-lM) ' ry£\\ \X X)(t ) | | ^2 (Q) + / Ö{9;
z z Jo

-. m

<? \ ^ (\\ CV1- A " " 1 II2 _L Ir7n ryn-l v n V n - 1 \

- 2 Z^Tn[}^ ~ ö
 WL2(Q) "•" ̂  ~ ̂  , A - A ;

(5.1)
4 „<*<*• O1 U " ̂  """'4

Let t* G [0,T] be chosen so that it realizes the maximum of || u — U ll^-im) + ̂ || X — X ||̂ 2m)* We then hide
the second term on the right-hand side of (5.1) into its left. This immediately gives the asserted error estimate
for u and x- The remaining estimate for 6 results from replacing on the right-hand side of (5.1) the one just
obtained. This argument complètes the proof of Theorem 4.1 for the semi-explicit method (3.1), as well as
reveals that the third term on the right-hand side does not occur for the implicit method (3.4). •

5.2. Proof of Theorem 4.2

We first introducé the following notation of discrete derivatives

We next rewrite (3.2) and (3.3) for n — 1 in place of n with n > 2

1 ( /n-1
)^) V0GV, (5.2)

Qn-2,<p) Vy£W. (5.3)

To extend these équations to n = 1 we need to define suitable quantities É7"1, 9 " 1 and X"1 . To this end, we
set 0 " 1 := ©° and Z° := ZQ> ̂ nd thereby define X~l according to the équation

yO _ y — l
e- — + Z° = 9-1. (5.4)

We then define U l to satisfy

7V0 _ r r - l
= A 0 o

We observe that such définitions do not enforce the constitutive relation U x = Q x + X \ but instead the
satisfaction of (5.2)-(5.3) for n = 1 along with the following estimâtes based on (H3) and (4.12)

ÖX° ||L2(n) = e-^W e0 - zo \\LHa) < C, (5.6)

H-Hn)I öU° \\H-Hn) = || A9° | |H-1 (Q) + || f WH-HV) < C. (5.7)
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We subtract (5.2) from (3.2), and use <p = G(öUn) G V to obtain

T™ I I 2 il JHTn~! I I 2 _ i_ II C i n / Q i ^ — 1 I I 2 i /O"- O^—l V n

7 'n

ro—1 | | 2 i M r v n c v n — 1 I|2 i /rz^ rjn—1 ^j-n -v-n—1\

ll + ö\\dX ~dX llz,2(m H (^ - ^ , X - X )

Similarly, we subtract (5.3) from (3.3) and take ip = ôXn G W to get

H (^ - ^ ,X - X )
Tn (5.9)

- —(6n - e n ~ \ x n - x71-1) - {(on - en-x) - (Q71-1 - en-2),^xn).

By adding (5.8) and (5.9), and summing the resulting equality over n for 1 < n < m < iV, we arrive at

-II ÖX™ ||22(n) + - V y öxn - ôxn~l fL2{n) + Y] — il e n - e"
2 n=l n=l T n

(5.10)

\\2
H-Hn) + |

In light of (5.6) and (5.7) we see that the first term of the right-hand side of (5.10) is bounded uniformly in e.
The second term can be handled via (4.11) as follows:

C + i max \\ÖUn\\2
L2{ny (5.11)

71=1 ~~ ~

To bound the third term in (5.10) we do sum by parts, use the stability constraint rn < e together with
9 " 1 = 6° , to get

m m

^ri _ 0^-i) _ (e™-1 _ Qn~2)JXn) = - { 9 m - 9 m ~ \ 5Xm)
n=l

2
71 = 1

(5.12)

Substituting (5.11)-(5.12) into (5.10) yields the asserted estimate (4.13), and complètes the proof. •
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Remark 5.1. Note that the stability constraint rn < e is only employed in (5.12), which is not present for the
implicit method (3.4).

6. PROOF OF THEOREM 4.3

Since we need to interpolate functions under minimal regularity assumptions, we resort to the Clément
interpolation operator IIn : HQ(Ù) —• Vf, which satisfies the following local approximation properties for ail
if e Hk(N(A)) and/c = 1,2

y - n>||L2(5) + hs\w<p - n » | | L 2 ( 5 ) < c*hk
su\\HHN{s)), (6.1)

y - n>| |L 2 ( e ) < c*hk
e-^

2u\\HHN{e))} (6.2)

where N(A) is the union of ail éléments of M71 surrounding the sets A = S £ Mn or A = e £ Bn [4]. The
constant C* dépends solely on the minimum angle of the mesh M71, which is also responsible for a universal
bound on the number of éléments belonging to N(S). This, in conjunction with (6.1) for k = 1, yields

livirvi| l î(n) < c||vp||L3(n). (6.3)

In contrast to Theorem 4.1, we now invoke the représentation formula (4.6) with 0 n = 0 n , Xn = pnXn and
Un = On + Xn, which leads to

n + Xn)Xn) = Xn - PnXn ^ 0.

We next estimate the last two terms on the right-hand side of (4.6). Using (3.7), we have for all t G (tn~1
it

n]

{ƒ - dtU, Geu) - (Vë,\7Geu) = ̂ (U^1 - InUn~\Geu) + (R^,UnGeu - Geu)

, V(UnGeu - Ge^) + {R%, IInGeu)n - (R^,TlnGeu) (6.4)

Since PnZn G A(PnXn), we see that

(PnZn
7 x ~ PX) = (PnZn

: x ~ PnXn) + (PnZn
7 PnXn - PX)

< *(x) - HPnzn) + (Pnzn, pnxn - px)

= £{t)(PnZn,PnXn~Pn-lXn-1).

Therefore, we easily obtain from (4.6) that for all t G (f1"1 ,^]
/A rf) PY P \< P(+\lPn7n pnXn pn~l vn-l \ i (Ç\n _ pn(jnr\n — l\ \

i £ /pn-lyn-1 nn/rnvn-h \
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Inserting these estimâtes into (4.6), we end up with the following concrete error représentation formula, valid
for any t* e ( t m ~\ tm] and 1 < m < N,

1 '*•
\\\ eu(n |&_ l(n) + ƒ 5(0; 9)dt + | | | ex(t*) | | | a ( n ) < | | | eu(0) | | | _ l ( n ) + | | | ex(0) ||

/
m

n=l •
m t

V / (R%,nnGeu-Geu)dt
n=l 7

(V9n , V(nnGeu - Geu))dt
(6.6)

E / ^

where t™ = min(£™,t*). We now estimate each term Ii to Iio separately.
First, the triangle inequality yields

ii < 3 E 1̂1 e- - . r e - 1 m2(n) + i E T"ll Ö""1 - /n0n~1 Hi-c")
n=l n=l

For I2 we need an estimate on || X — PX \\L?{Q.)- I n light of (4.1) we have

X-PX = t(t)(xn-1 - p"-1!"-1) + (1 - e(t))(xn.- pnxn),
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for all tn~1 <t <tn. Since rn < C#rn-i7 we immediately get

ƒ II V D V II J+ ^ - n II V ^ D^ v ^ II i n~-L l l V7"1" 1 TDn— 1 -V^TZ—1 II f£t 7 ^
/ II A — ̂ A | | L 2 ( ^ ) ^ S "TT II A — . T A ||j^2(r2) H ^ I I A ~~ ̂  A l l l / 2 ( ^ ) ) l 0 - ' ^

Jtn-1 / Z

whence, applying (3.15), we obtain

Since || Geu \\m(Ct) < II eu \\H-I(Q)I according to the définition (4.2) of the Green operator G : V* —> V, we thus
have

h + I? < j; max+ || eu(t) \\2
H-i{n) + C{Sl + £?).

Also, the regularity theory of second order elliptic operators such as G on non-smooth domains yields [8]

II Geu H^n) <C||eu | |L2 (n)
< C(\\ ee ||L2(n) + || ex \\LHn) + \\X-PX

because Q, is convex. Upon using the estimâtes (3.15), (6.1), and (6.7), we get

\\h2
nRl\\LHn)\\Geu\\H2{n)dt

0(6; Q)dt + ̂  m ^ || ex(t) |£ a ( n ) i

Similarly, this time using (6.2) instead of (6.1), we have

Is < l J* 6(9; O)àt + j^em^ || ex(t)

Applying (3.5) and (6.3) we arrive at

h<C^2 II H* \LHn)

8
:

Since PnZn~1 G A(P r i~1Xn-1), invoking the convexity of $ in (1.6) we realize that

(pn-lZn-l^pnXn _ pn-l^n-1) < $('pnjf «) _ ^•(P^-iX7""1) = 0,

whence

1 m 1

I8 < -J2Tn(Pn^n ~ pn-1Zn-\PnXn - Pn~1Xn'1)dt < ~E\.
2 2

1 m 1

J2(Pn^n pn-1Zn-\PnXn Pn~1Xn'1)dt <
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Since 0 n - P n ( / n B n - 1 ) = (9 n - I^Q™-1) + (^e71'1 - P n ( / n B n - 1 ) ) , and Pn is the identity outside of the
transition région T n , using (3.15) we can write

II e« - pn(inen-1) \\LHa) < y e" - / " e " " 1 ||La(n) +1| hnVre^1 \\LHT~),

which yields

I9 < ^ omax || ex(t) | |»a(n)

Finally, we easily obtain

and realize that substituting the above estimâtes for ( I Ï ) ] ^ into (6.6) leads to the asserted estimate of
Theorem4.1. n

1. SIMULATIONS

After a brief discussion of implementation issues, we present two examples which illustrate the performance
and efficiency of our adaptive finit e element method wit h error control.

7.1. Implementation

Let M and K be the mass and stiffness matrices, namely,

M : = ({<f>i^<l>j)h)i •_-.> K :=

The intégrais can be computed via the vertex quadrature rule, which gives rise to a diagonal M. Then the
linear algebraic system for ©n becomes

M 9 n + r K 9 n = M(9 n ~ 1 + X71-1 - Xn), (7.2)

or equivalently

9 n 4- A 9 n = 9 n " 1 + X71'1 - Xn, (7.3)

where A := r(M)~1K is easy to compute. The matrix ld + A of the linear system is symmetrie and positive
definite, thus the system can be solved by standard itérative solvers like SOR, (preconditioned) conjugate
gradient or multigrid methods. Even though the phase variable Xn is mostly constant, its update is performed
everywhere to detect the spontaneous appearance of a phase change (nucleation), which would not be easy to
track otherwise. Nevertheless, the simple algebraic calculation of Xn is much cheaper than the solution (7.3).

We can now design an adaptive method to automatically generate meshes and time-steps for the total error
err to be below a given tolérance tol. The a posteriori error estimate of Theorem 4.3 is first rewritten as follows:

a 'tm \i/2

ö(0\ e)dtj

SeM° n~ ><"'m SeMn
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where 77™ includes all error indicators of time discretization (from £\,8j) and rfg represents all local error
indicators of space discretization on element 5. The adaptive method adjusts time steps rn and adapts meshes
Mn so that

70 tol
77?<7 rt0l, T/g <

7htol (7.4)

where 70 + 7r + 7/i < 1 are given parameters. Mesh modification is done by refinement/coarsening via bisection.
Eléments violating (7.4) are refined, whereas éléments with small local error indicators relative to the local
tolérance may be coarsened. Coarsening is the inverse opération to a previous local refinement. This approach
tends to equidistribute errors over space and time, which is standard for parabolic problems; see [5].

Our adaptive method is able to detect the présence, and spontaneous appearance, of transition layers and
refine accordingly, and is insensitive to topological changes such as mer ging, extinction, and mush or singularity
formation (see Ex. 7.3). The transition layer velocity need not be computed explicitly for mesh design, which
is a major improvement with respect to [11].

7.2. Example: Modified traveling wave

This is an example with exact solution based on the traveling waves of [12]. Even though all fonctions
exhibit radial symmetry, this is a true 2D test because symmetry is not exploited by the code. Let ö^2

 :

ou := v/l/e + F2 /4. A 1D traveling wave G(x, t) = 0(x + Vt), xfa t) = x(z + Vt) is given by

§(x) :=•

X(x) :=

x < O

X ^_ X£,

where 7 is a parameter, V represents the traveling wave velocity, and x£ the transition région thickness; they
satisfy /Q

Xe 6(s)ds = Ve [12]. Note that x does not take values between —1 and 1 but rather between 0 and 1
as in [12]. We perform the experiments with V = 1 and e = 0.1,0.01.

Figures 1 and 2 show the behavior of the true errors ex — x ~~ X and e$ = 9 — 0 for tolérances tol = 4,2,1
and e = 0.1,0.01: the errors decrease almost at a linear rate as predicted by the theory; the total error
IkxlU00^1^)) + v/^llexlli'oo(£2(n)) + ||eö||L2(L2(n)) is depicted in Figure 4. The almost constant time-steps r are
displayed in Figure 3, which are consistent with a constant layer velocity V. The meshes are however highly
refined near the outer boundary of the transition layer T, where \/X exhibits a jump discontinuity, as indicated
by Figure 5. Figure 6 shows isolines of X, again concentrated near the outer boundary of T, together with the
rapid variation of X from 0 to 1 without oscillations.

7.3. Example: Oscillating source

This is a phase change in a container iï = (—1, l)2 , T = 20.0, with initial température 0(as,O) = 0.1 x2,
prescribed température at three walls Q(xit) = 0.1 x2 for x2 > —1, a fourth insulated wall dl/Q(x,i) = 0 for
x2 = — 1, and two circular oscillating heat sources driving the évolution,

f(x,t) =cos(0.2t)max(0.0, 3.125 - b0\x - (-0.2, -0.5)|2) + sin(0.2t) max (0.0, 3.125 - 50|x - (-0.2,0.5)|2);
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FIGURE l. Example 5.1. ||ex(t)||£,2(n) for e - 0.1, 0.01.
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FIGURE 2. Example 5.1. ||e9(t)||L2(n) for e = 0.1, 0.01.
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FIGURE 3. Example 5.1. Time step size for e = 0.1, 0.01.

time
1.00

see Figure 12. The exact solution is unknown. Figures 7 and 8 show the effect of decreasing the relaxation
parameter from e = 0.1 to e = 0.01 in terms of transition layer width. They also demonstrate the ability of the
method to handle topological changes such as merging, extinction, and création of transition layers; all these
features take place in the proposed example. The meshes are highly refined to capture both layer location and
présence of strong heat sources, and corresponding large variations of second derivatives. Figures 9 and 10
depict isolines of phase variable, confirm the shrinkage of layer width, and hint at the complicated topology of
the phase change. Finally Figure 11 displays isothermal curves.



ERROR CONTROL AND ADAPTIVITY FOR A PHASE RELAXATION MODEL 793
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FIGURE 4. Example 5.1. True error for e = 0.1,0.01.
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FIGURE 5. Example 5.1. Meshand isolines 9 = 0.5 • k(k > 0) at t « 0.3 with e = 0.1, tol = 2.

FIGURE 6. Example 5.1. Isolines X = 0.1.fc(0 < k < 10) and graph of X at t a; 0.3 with
e = 0.1,tol = 2.
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FIGURE 7. Example-5.2. Meshes for e = 0.1, tol = 3 at t « 0.5,5.5,10.5,15.5.

FIGURE 8. Example 5.2. Meshes for e = 0.01, tol = 3 a t t « 0.5,5.5,10.5,15.5.
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FIGURE 9. Example 5.2. Isolines X = 0.2 • k (-5 < k < 5) for e = 0.1, tol = 3 at t « 0.5,5.5,10.5,15.5.

FIGURE 10. Example 5.2. Isolines X = 0.2 - k (-5 < fc < 5) for e = 0.01, tol = 3 at t « 0.5, 5.5,10.5,15.5.
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FIGURE 11. Example 5.2. Isolines G = 0,02 • k(~5 < k < 5) for e = 0.01, tol = 3 at t « 0.5,5.5,10.5,15.5.

FIGURE 12. Example 5.2. Graphs of right-hand side ƒ for e = 0.01, tol = 3 at i « 0.5,5.5,10.5,15.5.
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