@article{M2AN_2000__34_4_775_0, author = {Chen, Zhiming and Nochetto, Ricardo H. and Schmidt, Alfred}, title = {Error control and adaptivity for a phase relaxation model}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {775--797}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {4}, year = {2000}, mrnumber = {1784485}, zbl = {0965.65114}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_4_775_0/} }
TY - JOUR AU - Chen, Zhiming AU - Nochetto, Ricardo H. AU - Schmidt, Alfred TI - Error control and adaptivity for a phase relaxation model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 775 EP - 797 VL - 34 IS - 4 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_4_775_0/ LA - en ID - M2AN_2000__34_4_775_0 ER -
%0 Journal Article %A Chen, Zhiming %A Nochetto, Ricardo H. %A Schmidt, Alfred %T Error control and adaptivity for a phase relaxation model %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 775-797 %V 34 %N 4 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_4_775_0/ %G en %F M2AN_2000__34_4_775_0
Chen, Zhiming; Nochetto, Ricardo H.; Schmidt, Alfred. Error control and adaptivity for a phase relaxation model. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 4, pp. 775-797. http://archive.numdam.org/item/M2AN_2000__34_4_775_0/
[1] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR | Zbl
and ,[2] Adaptive finite element methods for diffuse interface models (in preparation).
, and ,[3] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[4] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR | Zbl
,[5] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR | Zbl
and ,[6] Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | MR | Zbl
and ,[7] Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal 35 (1998) 1315-1325. | MR | Zbl
, and ,[8] Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). | Zbl
,[9] Optimal error estimates for semidiscrete phase relaxation models. RAIRO Model. Math. Anal. Numér. 31 (1997) 91-120. | Numdam | MR | Zbl
and ,[10] A P1 - P1 finite element method for a phase relaxation model. I. Quasi uniform mesh. SIAM J. Numer. Anal. 35 (1998) 1176-1190. | MR | Zbl
and ,[11] A Pl - P1 finite element method for a phase relaxation model. II. Adaptively refined meshes. SIAM J. Numér. Anal. 36 (1999) 974-999. | MR | Zbl
, and ,[12] Continuous and semidiscrete traveling waves for a phase relaxation model. European J. Appl. Math. 5 (1994) 177-199. | MR | Zbl
, and ,[13] Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Sér. I 326 (1998) 1437-1442. | MR | Zbl
, and ,[14] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 529-589. | MR | Zbl
, and ,[15] A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1-24. | MR | Zbl
, and ,[16] Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Un. Mat. Ital. B 7 (1987) 795-814. | MR | Zbl
and ,[17] Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math. 52 (1988) 165-185. | MR | Zbl
and ,[18] Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985) 225-245. | MR | Zbl
,[19] Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1986) 233-256. | MR | Zbl
,