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ABOUT STABILITY OF EQUILIBRIUM SHAPES

MARC DAMBRINE1 AND MICHEL PIERRE 1

Abstract. We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy
functional. We analyze a problem arising when looking at the positivity of the second derivative in
order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity-
holds, it does for a weaker norm than the norm for which the functional is twice differentiable and
local optimality cannot be a priori deduced. We solve this problem for a particular but significant
example. We prove "weak-coercivity" of the second derivative uniformly in a "strong" neighborhood
of the equilibrium shape.

Résumé. Nous nous intéressons à la stabilité des formes critiques ou d' "équilibre" d'une énergie
dépendant de la forme. Dans le but de montrer qu'une forme critique est une forme optimale, nous
étudions la positivité de la dérivée seconde. En effet, quand elle a lieu, la coercivité n'est vraie que
dans une norme plus faible que celle pour laquelle l'énergie est différentiable: l'optimalité locale ne
peut donc pas en être déduite a priori. Nous résolvons cette difficulté dans un cas particulier mais
néanmoins significatif. Nous établissons de la "coercivité faible" de la dérivée seconde uniformément
dans un voisinage "fort" de la forme d'équilibre.
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1. INTRODUCTION

We consider hère the question of stability of equilibrium shapes which can be stated as follows. Let ft »—> E (Cl)
be a real valued functional defined on a family Ö of subsets Q, of IRn. Let f̂ o be an equilibrium shape for £?(.),
that is a shape at which the first derivative of E(.) on Ö vanishes (we also say "critical shape", see below for a
précise définition). By stability, we mean that E(Clo) is a strict local extremum, say a minimum, that is

E(fio) < E(Q) (1.1)

for ail £1 close enough to QQ &nd in O. If E(.) represents the total energy in some shape equilibrium problem,
this définition coïncides with the classical notion of stability.

One of the difficulties is to understand properly the meaning of "being close to Qo" &nd therefore to choose
the right topology on Ö. One of the classical techniques is then to compute the second derivative of E(.) at
ÇIQ and to prove that it is strictly positive. However, in many applications, one is led to a situation where
the second derivative of £?(.) at ft0 is coercive (i.e. strictly positive) for a certain norm which turns out to be
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weaker than the norm for which differentiability and Taylor formula hold. Consequently, the existence of a local
minimum does not follow, even for the stronger topology. In order to show what could happen, let us consider
an elementary example of such a situation (not taken from shape optimization). Let £2(0,1) and HQ(071) be
equipped with their usual norm and recall that || • ||L2 < || • | | H i . Consider the functional defined as

E{u) = \\u\\

One can check that E is twice differentiable in HQ and that

Therefore, E"(Q) is coercive for the weaker norm L2. This yields some "weak stability": indeed, there is a local
minimum in each direction u=0 G HQ since, for t E M, E(tuo) = ^(II^OIIL2 — £2||wo||^-i). However, there is no
local minimum for E, even for the strong topology, since there is no r > 0 such that

() E(u) > E(0) = 0 le. |M|£2(0|1

as one can always construct a séquence in iïo(0,1) such that

~* ° when n

Our goal is to precisely analyze this difficulty in a particular, but significant situation coming from shape
optimization. Hère, the second derivative of E(.) will exist in a C2'a-norm around QQ, but coercivity will only
hold with respect to the iî1/2(<9r20)-norm. This situation is typical in shapes problems. Hère we choose £?(.)
to be the energy associated with the classical Dirichlet problem and the measure of the admissible domains is
supposed to be given. This model problem arises in many examples: let us for instance mention the case where
E(.) is the total energy in a problem of equilibrium shapes for liquid metals confined in a electro-magnetic
field (see e.g. [1,12,13,15]) We will restrict ourself to a simple two-dimensional model for which stability was
already investigated in [3,7-9,14,19]. The critical shapes we consider are assumed to be regular. Stability of a
critical shape ÎÎQ will mean that E(QQ) is a strict minimum for E(Q) among the admissible domains Q in some
C2'"-neighborhood of S~2o with the same measure as fV

We prove hère for this problem that stability does occur when f/^-positivity of the second derivative holds
on the tangent subspace of constraints. The main idea is to compute the second derivative not only at the
equilibrium shape CIQ but around QQ in the C2)Q-sense and to prove a uniform i71/2(90o)"coercivity in a C2)Q-
neighborhood of ÇIQ. This yields at least the existence of a local minimum in the C2>a-topology. This technique,
while developed hère only in a spécifie case, may actually be used in many other situations like for the "exterior
shaping problem" where the Dirichlet problem is set in the exterior of the shapes, or also when the functional
dépends on the perimeter and for more gênerai functional depending on the state and on the gradient of the
state (see [4]). We think that the estimate of the variation of the second derivative is by itself interesting and
might lead to other applications. Note that the above question of choice of topologies was, in particular, raised
in [7].

2. THE PROBLEM AND THE RESULTS

Let k be a given real-valued function with compact support in M? and belonging to the C0)a;(M2) Hölder
space (et € (0,1)) and let S > meas(support(fc)) be a given constant where meas(.) stands for the Lebesgue
measure. We first define the family O of admissible shapes to be the family of open bounded subsets Cl of R2

with C2'a-boundary such that

meas(^) = 5, (2.1)

support(k) C ÎÎ. (2.2)
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We consider the shaping function E from O into M defined by

E(tt)=- f \Vun\\
Jn

where |. | dénotes here the Euclidian norm and the function UQ, is the solution of the Dirichlet problem

-AUQ = k in ft,ƒ
= o on an. [ ]

Note that E(£l) is, up to a positive constant, the "energy" associated with the Dirichlet problem (2.3) which is

l f \Vun\
2- f kuti = ~ f |Vun|2 = - f kun,1 Jn Jn l Jn Jn

the above equalities following easily from multiplying (2.3) by UQ,. Note also that (see e.g. Sect. 4), with the
above regularity assumptions

We now consider ÜQ a critical point of E under the constraint (2.1) that is to say an open set ÜQ in O where
the derivative of E(Q) + A meas(ri) with respect to Q vanishes for some A e l . As we will verify later (see
Sect. 5), this means - and we will assume it throughout the paper:

|V^no|2 = Aon<9Ü0. (2.4)

The constant A is the Lagrange multiplier corresponding to the constraint meas(Q) = S. We will recall below
(see beginning of Sect. 3) the définition of the spaces C2^ and of their norms.

We want to find sufficient conditions for the stability of QQ using second derivatives of the augmented
functional J(ü) — E(ü) + A meas(fi). Let us first recall some facts about these derivatives.

Let us dénote

V(T}) := {9 e C2^a (IR2,R2); ||6 - IdR2 ||2,a < r/}. (2.5)

Note that, for 77 small enough, any G G V(r}) is a diffeomorphism. For all O G V(r}), we set J(Q) := J(6(O0)).
Then the second (classical) derivative of J exists and one can show (see e.g. [2,6,16-18,20,21] or also Sect. 5
here) that, since üo is a critical shape, the second derivative at G = Id(= Identity) has a spécifie structure,
namely

V£ e C2-«(R2,R2), J"(Id)(£,0 = B(£ • n|Sn0,£ • n{ano) (2.6)

where B is a continuous bilinear form on C1'a(9Qo)^), n is the unit exterior normal vector field to <9£lo &nd
•jôn0 dénotes the restriction of a function to <9f20. As we will see in Section 5, in the situation we consider here,
the explicit expression of B is given as follows: set m = £ • n|a^0, then

, m ) = 2 A /
JanQ

B(m,m) = 2 A / C0(rn)m + Cm2, (2.7)
J

where C dénotes the curvature of dSlo and Co dénotes the so-called "capacity" or "Steklov-Poincaré" operator
on dQ,Q. We refer e.g. to [5] or to Section 5 for a précise définition and properties of this operator but we can
already mention that:

f Co{m)m= [ |VM|2
Jdn0 Jn0
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where M is the harmonie extension of m to ÜQ. Consequently, the first part of the intégral is always strictly
positive (except if M = 0 which happens only if m is constant on each boundary of the connected components
offio).

A necessary condition for stability is that the second derivative of J be positive on the subspace which is
tangent to the constraint, namely the subspace of functions m as above such that Jdçt m = 0. Obviously, it is
the case if, for instance, Qo is convex; then B is even coercive in the space Hl/2(dQo) if A > 0. More gênerai
situations are described in [4,11]. See also more comments on this at the end of this paper.

The question we address hère is the converse. For this, one has to assume, as usual, that the second derivative
is strtctly positive in some sensé. The natural space of coercivity hère is iî1/2(9^o)- The question is then the
following: assume that there exists c > 0 such that

/ m = 0, S(m,m) > c||m||^1/2(afîo).Vm €C2>a(dttQiR) with / m = 0, S(m,m) > c||m||^1/2(afîo). (2.8)

Then, is E(QQ) a strict local minimum with the constraint (2.1), local at least in the C2>a-topology?
We prove hère that the answer to this question is positive:

Theorem 2.1 (Existence of a local strict minimum). Assume d£lo is of class C4'a and (2.8) holds for some
c > 0. Then there exists r\ > 0 such that for ail 6 in V(rj) with meas(0(f2o)) = meas($l0) and different from
the identity

The main point in the proof of this resuit will be contained in Theorem 2.5. In order to state it, we need to
introducé a few notations and to recall some more or less known f acts on small regular perturbations of ÇIQ
and of ÔÇIQ. Since we are in dimension two, ÖQQ is a union of q disjoint regular Jordan curves. For simplicity,
we will write the proof when q = 1 (i.e. fio is simply connected). The changes needed in the gênerai case are
obvious (see the remark at the end of Sect. 2.2 or also [4]).

Let 7 dénote a function in Cfe'a([0, X],3R2), with k > 2, whose image is dQo, that is

7 is one-to-one from [0, L) into 9f2o,
vse[o,L],||7'(s)|| = i.

Hère the parameter s is the length parameter and L is the total length of dQ>o. We dénote by n the unit exterior
normal derivative to Ô^IQ. The orientation is chosen so that so that 71(7(5)) = -R-TT^CT'CS)) where R-K/2 is the
rotation of angle —TT/2 in M2 or also 71(7(5)) = (72(5), — 7i(s)) where 7 = (71,72)- We will often write simply
n(s) = 71(7(5)).

For r > 0, we dénote by TT the tubular neighborhood of duo with radius r, that is

TT = {x e M2; distance(x, <9f20) <
 r } -

Lemma 2.2 (Normal représentation of small perturbations of 9ÎÎQ)- Assume dü0 is of class C2)Q\ Then, there
exists ri > 0 such that the mapping

(s,r) G [0,L) x (-r i , n ) -> 7(5) + r n(s) G TTl

is one-to-one. Moreover, there exists 771 > 0 such that for ail @ G V(?7i); there exists a unique ds G
Clia([0, L]y (—ri, ri)) with (ie(0) = d&(L) and such that s —• 7(s) + do(s) n(s) is one-to-one from [0,L)
into Q(dflo). If dflo is °f class C3 'a; then de is of class C2)Q; and we have

| |de | |2 ,a<C| |e-Id | | 2 la. (2.9)
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Here our goal is to minimize the functional E(.) on open subsets with a prescribed measure. Therefore we want
to go from ÜQ to 0(fio) f°r anY @ £ V(r/i) with meas(0(fïo)) = meas(^o), by a regular path t G [0,1] t-* Q(t)
where meas(£2(t)) = meas(Qo)* This can be done through normal déformations obtained from the flow of a
divergence-f ree vector field as stated in the next proposition.

We first need to extend the vector-field n to the tubular neighborhood TTl of dQ,Q. We do it as follows: if
x G TTli there exists (s,r) unique in [0, L) x (—TI,TI) such that x = 7(5) + rn(s); then we define n(x) as
n(j(s)). Thus for all (s,r) G [0,L) x (-rlyrx),

n(7 ( s )+ rn ( s ) )=n(3 ) . (2.10)

Proposition 2.3 (Area-preserving normal déformations of QQ). We assume dflo is of class C4'a. There exist
r\2 > 0,T2 > 0 such that, for all 0 G V(?72) wz£ft meas(0(r2o)) = meas(f2o); tóere exists a divergence-f ree vector
field XQ G C2>Q(R2,R2) and mQ G C2^(TT2,M) such that XQ = m® n on TT2 and the flow $@ of XQ maps
dQo onto Q(d£ïo) at time t = l. Moreover, we have for all t €•[(), 1],

a. (2.11)

Recall that the flow &Q of the vector field XQ is the solution of

\*e(0, x) = x.

Since divXe = 0, we have det $e(£,x) = 1, so that, in particular, meas($e(^ ^o)) = meas(fio)- We will use
this area-preserving path t —> $e(*» ̂ 0) going from Qo to $e(l> ^0) — 0(fïo) and control the variation of E(-)
along this path by studying the second derivative with respect to t of

Lemma 2.4. Assume f̂ o /ms a C4>a-boundary. Then, for all 0 G V(r}2), t |~̂  ee(t) is twice differentiable on
[0,1].

A proof of this lemma can be found in [7] (see also [6,16,20,21]). The main arguments are also given here
while Computing e@(t) (see Sect. 5).

We can now state our key-result.

Theorem 2.5. Assume dfto is of class C4'a. Then there exist 770 > 0 and a function UJ :]0,?7O] I—> M with
a;(r)

[0,1],

lima;(r) = 0, such that for all r\ G (0,770] and all 0 G V(r/) with meas(0(f£o)) — meas(r2o), we have for all
r|0

It is easy to guess how Theorem 1 can be deduced from this theorem by application of Taylor formula (see the
end of this paper). The main point is that around the equilibrium shape Ho, if the positivity condition (2.8)
holds, then the second derivative will actually be i?1/2(<9no)-coercive uniformly in a C2>a-neighborhood of fto-

The above property dépends on the nature of the various terms which come out in the expression of the
second derivative. Obviously, it can be shown to be valid for many other similar functionals like those already
mentioned above (see [4,11]).

With respect to the regularity assumptions, the hypothesis that the critical point should be of class C4'a is
not a restriction since Henrot and the second author have shown in [13] that if a regular Jordan curve with a
C2 boundary is a critical point for this functional, then it is in fact analytic.
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3. PROOFS OF GEOMETRICAL RESULTS

Let us recall the classical définitions of Hölder spaces and norms. Let D be an open subset of W.p,p > 1 and
let q>l. Then the C2{D,Rq)-norm is defined as

IMI2 = ||U|U~(Z?,R«) + sup \\dM\L°°(D,m<i) + sup ||9î
2
iw||Loo(D)]Rq).

l<i<n l<ï,3<n

For a G (0,1), the Hölder space C2>a(D,W*) is the subspace of C2-functions such that

dl3u(x) - dljU(y)\\
max sup

and the C2'a-norm is defined as

\\U 2 , a = \\U\\2 SUp
\\dlju{x)-dlju{y)\\

D\\x-y\\<*

It gives to C2'a(D,lR.g) a Banach space structure. A similar définition may be given for Cfc'a(D,IRg), k > 0 by
replacing the second dérivât ives by the Art h derivatives.

3.1. Proof of Lemma 2.2.

This is rather classical but we give here an elementary proof whose ingrédients will be partly used later in
this paper.

Assume first that dQ0 is of class C2. Let us consider the mapping T frorn M x R into E2 defined by
T(s, r) — 7(s) + r n(s) which is of class C1 and L-periodic in s. The derivative of T at (so, 0) is given by

T'(so,0) = W(so) n(sQ)}

so that detT^SQjO) = —1- By the inverse mapping theorem, T is a local C^diffeomorphisrn.
Let us show that, if T\ is small enough, T is also a global bijection from [0,1/) x (—ri, ri) into TTl.
Let T(SO),T}(SQ) > 0 be such that T is a diffeomorphism from (s0 — T?(SO),SO + v(so)) x (—T(SQ)IT(SO)) onto

a neighborhood LÜ(SQ) of 7(so). Up to still reducing r(50), one can also assume that

H 9^o = T({s0 - 77(50), {0}). (3.1)

Let r(so) be such that B(^y(so),r(so)) C a;(so). One can find a finite covering of ÔQQ by the union of the
{dQ0 D B(j(si)^ r(si)), Si e [0 ,L) , Î = l...p}. Next we set:

(s î),i = l...p},ri := min{ri/5,r

Then the announced global bijection property holds. Indeed, assume

7(s)-hrn(s) =7(S) + fn(5), withr,f € ( - r

Then

(3.2)

< 2 n <-r x .
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Therefore, 7(5) and 7(3) belong to the same bail B(j(sz)yr(si)). Then, by (3.1), there exist

er, <J G (—T}(sl) + Si, ŝ  + v(si))i a = s m ° d W ) ô- = -s mod (Z/),

such that

7 ( s ) =7(cr),7(S) =7(ö")-

Then, (3.2) can be rewritten

7(0-) + r n ( a ) = 7(<r) + f n(e>), withr,f G ( - T I J T I ) , ^ * G (-Î?(SÏ) + s i ; S; + 77(5 )̂).

By the local bijection property of T, a = <r, r = f. Since now 7 is a bijection from [0, L) onto öfio» s, s G [0, L)
and 7(5) = 7(s) imply finally that s = 5.

For the regularity, we know that (s(x),f(x)) = T~1(x) is of class C1 on 7^ . We then easily check that
Vf(x) = n(s(x)) (see 3.4 below). Therefore, f' is of class C1 and f is of class C2 (note that f is the distance
function to dü0 and it is classical that it has the regularity of dü0^ see e.g. [10]). If 7 is of class Cfc'a, then T
and T"1 are of class Ck~lyOc. So is f' so that f is of class CkyŒ.

Let us now consider 0 G V(rçi), 771 > 0; recall that 0 is then of class C2'a and that 7 is assumed to be of class
Ck>a with k = 2 or 3. The mapping y(s) — 6(7(s)) is of class C2'a and, if 771 is small enough so that Y(s) G TTl

for all 5, with the previous notations and ip(s) := s(y(s)), one can write

Y(s) = 7(V-(s)) + f(Y(s))n(^(s)). ' (3.3)

For the regularity, ^ is of class Ck~1>a and f(y) of class C2)O;. Let us check that ip is invertible by proving that
its derivative does not vanish. It is given by

TP'(S)=S'(Y(S))Y>(S).

We can deduce the expression of s' by inverting

T'(s,T) = [1'(s)+Tn'(s) n(s)} (3.4)

and we easily obtain

. (3.5)

Since T is a diffeomorphism, detT' does not vanish so that ifjf vanishes if and only if 0 = 7'(s) • Yf(s). It is not
the case if rji is small enough since

\j'(s) • Y'(S) - 1 | = |7'(S) • (y'(s) - 7'(s))|| < \\Y'(S) - -zoon < c ne - id||cl

where we used Y1 = DQjf for the last inequality. Therefore ^ is invertible and is a bijection from [0, L) int o
+ L). Plugging i>~x{s) in place of s into (3.3) leads to

\a)) = 7(s) + cfe(5)n(5) (3.6)

where we set de(s) = r(Y(tp~1(s))). We check that de is of class Ck~1'OL.
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We finish the proof of Lemma 2.2 by obtaining the estimate on de> when k = 3. We will use the following
technical lemma whose proof is left to the reader:

Lemma 3.1. Let p,q > 1, A :W -+W of class C2>Œ, (3 : Rq -> Rp of class C2 'a and B : W - • Rp of class
C3 ' a . Then, there exists Cx = Ci(||/?||C2,«) and C2 = C2(\\B\\C^, ||A||C2.«) such that

\\Aop\\c*,a KCiWAWc*^ (3.7)

\\BoA- B\\C2,« < C2 \\A ~ Id||C2,a. (3.8)

Remark. Note that C2 involves the third derivative of B.

We first apply twice the above lemma to bound the C2 'a-norm of ip = 5(6(7)) by a constant depending on
the data and on 771 (we use here that 5 is of class C2)O: and therefore that 7 is of class C3 'a). We deduce that
the C2)Ck:-norm of ij)"1 is also bounded by a similar constant.

Next we apply the above lemma with A — do>{ip) and j3 = ip~l to get

Then we use

de(^(5)) = f o 6 o 7(5) = f o 0 o 7(5) — f o 7(5) = [f o 0 — f] o 7,

and we apply again the first part of the above lemma with A = f o 0 — f and (3 = 7 to obtain

||de ° V'llc2'0 < C ||f o 0 — f||C2,a.

Finally we use the second part of the above lemma to conclude (recall that by previous remarks, here f is of
class C3>Q).

3.2. Proof of Proposition 2.3

We will construct the function me from M2 into R so that XQ = TUQU be divergence-free. Here, n dénotes
the extension of the unit normal to TTl as defined in (2.10). We will use the local coordinates (s ,r) introduced
in Lemma 1 to first define m in a neighborhood of ÖQQ. Let us compute div(n) by differentiating

x = rf(s(x)) + f(x)n(x)

with respect to x:

ld = Dj(s(x))Ds(x) + n(x)Df(x) + f(x)Dn(x).

We use the expressions of the derivatives of s,f obtained above (Vs is given in (3.5) and Vf (ar) = n(x)) and
we take the trace of the latter equality to get

2 = -(detT'(x))-1 + 1 +f(a;)div(n)(aï).

By using also (see 3.4),

detr r(s ,r) =det(7 /
)n)(s)+Tdet(ra',n)(s) = - 1 + rdet(n /,n)(s),

we deduce the expression of div(n):

dW(»)(.,r) - , - ( 1
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From now on, we introducé the notation a(s) := det(n,n')(s). Note that a(s) is exactly the curvature at 7(5)
of the curve dfio seen from inside. It is of class C2'a since <9QQ is assumed to be of class C4>a. An important
remark on (3.9) is that

V(5,r)€T r i , l + ra(s) > 0,

since det T' ^ 0 on TTl. We fix T2 G (0, ri) (depending only on dfto and ri) such that

V(s, T) eTT2, 1 + ra(s) > cT2 > 0. (3.10)

For vector fields of the form X — ra(s, r)n^ we have

divX = (Vm,n) + mdivn - dTm(s,r) + a(s)m(s>T\ ( 3 J 1 )
1 + ra{s)

so that X = mn will be divergence-free if it satisfies:

(1 + ra($))dTm(s, r) + a(s)m(s, r) = 0. (3.12)

This leads to

/ ( S ) (3.13)
{s)

where ƒ is to be determined as follows: let 0 € V(̂ 2) with 7?2 = minj?]!, r2} (where 771, r2 are defined in Lemma 1
and 3.10); then ƒ should be such that the following boundary conditions be satisfied

$(0, dtt0) = 9fi0, $(1,0îîo) = © O W (3.14)

where $(£,.) is the flow of X, that is the solution of

t,x)), t > 0 ,

Since X = rrin, the trajectories of <&(t,x) starting at x = 7(5) G ôfio are parallel to n, at least for small t, so
that

* ( t , 7 W ) = 7 W + r ( M ) n ( s ) . (3.15)

The above system reduces to the scalar ordinary differential équation in r(.,.)

&r(M)=m(s,r( t ,a)) , (3.16)

and the boundary conditions (3.14) become

r(5 l0)=0,r(s , l ) = de(s), (3.17)

where de is defined in Lemma 1. According to (3.13), the équation (3.16) is equivalent to the existence of a
fonction C(s) such that

^a(s)r(s, t)2 + r(s, t) = ƒ (s)t + C(s). (3.18)
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Now ƒ, C have to satisfy (3.17): the condition r(s, 0) — 0 leads to C(s) = 0 and the other one to

[ i 2 ]. (3.19)

It remains to prove that, with this choice of ƒ, the équation (3.18) does have a solution r(s,t) for t G [0,1]. It
is indeed the case since it is a quadratic équation in r(syt) with discriminant

A(t) = 1 + [a(s)2d@(s)2 4- 2a(s)de(s)]t.

This quantity is linear in i, nonnegative at t = 0 as well as at t = 1 since:

A ( l ) = [a(s)d&(s) + l]2.

Recall that, by (3.10) and r]2 < T?I, 1 + a(s)de(s) > cT2. We deduce the existence on [0,1] of a solution to (3.18)
given by

r ( M ) = [ - 1 + ^/l+t(a(s)2d@(s)2 + 2a(s)dQ(s))]/a(s)Af a(s) ^ 0 , .
r(5 , t) - «de(s), if a(s) = 0. {ó }

At this step, for ail G G V(?72), we have constructed a divergence-free vector-fleld X = mn in the neighbor-
hood TTl of dft0 where m^ given by the formulas (3.13, 3.19) is of class C2iOL. We will now use it to define the
divergence-free vector-field XQ on the whole space M2 (see also the remark at the end of this paragraph).

We dénote by C a CQ° (R2, R)-function, identically equal to 1 on TT2 and with compact support in TTl. Recall
that $([0,1] x duo) C TT2. Since div(X) = 0 o n T T l , there exists £ G C3'a locally so that X = (^, - ^ s ) . But,
as proved e.g. in [13], this is valid globally on TTl since

0= ƒ ( X e , n ) = / m= ƒ m(^0)ds, (3.21)

as we check below. Then we set

Obviously X e coincides with X — mn on TT2 and, by construction of m, satisfies all the conclusions of
Proposition 2.3.

To obtain the final estimate on $e , recall first that, at least on

{ l n ® f = \adl> f = ~\adl -d@-

By using Lemma 3.1 and the estimate of Lemma 2.2, we deduce

||x@||c2)a <c\\de\\C2.a < c | |

Again by Lemma 3.1

We then deduce the announced estimate on $e from the latter estimâtes and the fact that $e is the flow
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It remains to check (3.21). This is coming from the assumption that meas(0(f2o)) — meas(Qo)- Indeed, this
implies

f
0 = /

Jo

fL

0 = / de(
Jo

which gives (we drop the s-dependence)

(n A 7 / + 7 A n ' ) + d@7 /\n + d%n An'

or after integrating the term in df by parts and using the notation a(s) introduced before:

0 = / 2de + d%a(s).
Jo

But, according to (3.13, 3.19), this is exactly (3.21).

Remark. About the extension of X outside TTl: the fact that divX = 0 on TTl implies that, for any extension
of X to IR2, t —• meas($(£, fio)) *s hnear in t since the second derivative vanishes. As $(1) is a diffeomorphism
and $(l,0fio) = ©(öfio), then *(l,fi0) = ö(^o)- Since meas(6(^0)) = meas(Qo), then t -> meas($(t, fi0)) is
constant. Therefore, any extension of X would be convenient for our pur pose. This remark is actually to be
used in the gênerai case when dft0 is a finite number of Jordan's curves and TTl a neighborhood of ÔQQ. Then,
if ÜQ is for instance not connected, we would not be able to extend X as a free-divergence vector field on 3R2.

3.3. Some more estimâtes

With the notations of the previous section, we have:

Proposition 3.2. Under the assumption of Proposition 2.3} there exists a constant C dependmg only on the
data such that for all Q G V(rj2) and all t e [0,1]

d||2,a. (3.22)

Id||2)a. (3.23)

Proof. Recall (see 3.13? 3.20) that, in terms of local coordinates and with the previous notations

+T(s,t)a{s))-1 - 1], (3.24)

f (s) = m{s,O) = me(7(s)) = -[±a(s)de(s)2 + de(s)]. (3.25)

As a conséquence

iCi + TfotM*))"1-!)!-

We know from (3.10) that 1 + r(s,t)a(s) is bounded from below by cT2 on {(s,t) G [0,1/] x [0,1]}. Therefore,
since (1 + ra)'1 — 1 = —ra/(l + ra)

sup \(l+T(s,t)a(s))-x -1)\ ^c^l lal loo
se[o,L] (s,t)e[o,L]x[o,i]
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Using (3.20), we bound r from above by

|r(s, t)\ < \a(s)\dQ(s)2 + 2|de(s)| < C||del|oo < C||9 - Id||2fû,

the latter inequality coming from (2.9). This proves the first estimate of Proposition 3.2. For the second one,
we use the following lemma:

Lemma 3.3. Let v e Hl/2(dfl0),w € C^ôfio). Then, vw belongs to Hl/2(dQo) and

\\vw\\Hx/2{mö) < C\\v\\Hi/2{dno)\\w\\c^dQo) (3-26)

for some constant C depending only on S7o.

We postpone the proof of this lemma and continue the proof of the proposition. From this lemma and the
expression (3.24), we obtain:

By differentiation with respect to s, we see that

||ös(l + r(.>t)o(.))-1IU«-([o,L]) < 4jds(a(.)T(,t))\\oo.

Using the expression of r in (3.20), we obtain the existence of C such that

\\dMM->t))\\oo < c\\de\\Cx < c||e-id||2,a.

This finishes the proof of the proposition.

Proof of Lemma 3.3. Let V be an harmonie extension of v to ̂ o a n d W a C1-extension of w to QQ SO that, for
some constant C depending only on ŒQ,

), \\W\\CHQ0) < C|

We then have

I I ^ I I H ^ ^ O ) ^ C\\VW\\Hi(noy

We now use

\\VW\\LHno) <

), \\VVW\\L,liio) <

and the estimate (3.26) follows.

We finish this section by stating some more geometrie estimâtes.

Proposition 3.4. There is a constant C > 0 such that for ail 9 € V(r)2) and ail t e [0,1]:

1. ||^eW-IdM2|Uoo + ||^2^eWli^ <C||e-IdR 3 |k*
2. WDQeit)'1 ~ IdM2||Loo + \\D[D$e(t)-

1] \\Lco < C ||O - IdE2 ||2îQ

3. if nt dénotes the unit normal field to fit,

<C\\Q- IdR2 ||2,Q (3.27)
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4. if J(t) = deiD$e(t)\tD$e(t)-'1n\ then

\\J(t) - l|U~(ôn0) <CW@- IdR2ll2.a. (3.28)

Proof of Proposition 3.4. Note first that, thanks to the estimate (2.11), it is sufficient to bound each of the four
expressions in the Proposition by C ||$e(*) — IdR2l|2,a-

The first estimate comes from the définition of the C2)0:-norm applied to
For the second one, use that for all x eR2

oo
1^) = IdR2 -f ̂ [ IdE 2 - W e W W r - (3.29)

71=1

It follows that (up to still reducing r/2)

-^x) -ld.,» < ' ' ^ g : 1 ^ 1 1 , . < C\\D*e(t)(X) -IdR2||.
1 \\D$e{t)(x) I d 2 | |

For the estimate on the second derivative, we differentiate (3.29) and bound norms from above similarly.
For the third estimate, let us dénote

z(s) := 3a[$e(t,7(*))] = D$e(tMs)W(s).

Since n(s) and 72^(^0(^,7(5))) are respectiveiy deduced from 7'(s) and z(s)/\z(s)\ by a rotation of angle — TT/2,
we have

||n t($e(t)) - n | | c i ( 9 n o ) = \\-~r - 7;||ci(anÉ)-

We will estimate the right-hand side. We have

||z(s)| - 1| = ||z(s)| - |7 '(s)| | < \z(s) - V(s)| < ||D$e(t,7(5)) - Id|| < ||*e(t) - IdR2||2,a.

If 772 is chosen small enough - and we assume it here - this implies

\\Z(S)\ - 1| < C | |e - IdR2||2,a < 1/2, \Z(S)\ > 1/2, H^S)!-1 - 1| < C ||O - IdRa||2,a

l ^ ï - Y(S)| < Iz^Ulz^r1 - 1| + |z(5) - 7 ' ( S ) | < C||9 -IdRa||2.«,
\Z{S)\

whence the L°°-estimate of zlz^1 — 7'. For the £°°-estimate of its derivative, note first that

z'{s) = D2^e{tH{s)){l\s),i{s)) + D$e{tMs)W(s)

so that

|/(«) - l"(s)\ < ||Z?2^e(t)||oo + \\D$e(t) - Id|||7"(s)| < C | | $ e - Id||2,«.

Now, we use

ds{z{s)\z{s)\-^) = z\s)\z{s)\^ - z{s)\z{s)\-z(z{s),z'{s)).
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We treat this expression as before, using in particular the estimate of ^(s) !" 1 — 1|, the only new term being
(z(s),zf(s)) which we estimate as follows:

\ { z , z ' ) \ = \ { z , z f ) - { i , i f ) \ < \ ( z - j ' , z ' ) + (j,zf - 7 " ) !

and, as shown before, we obtain a bound from above by C ||8 — Id^l^a-
Finally, the variation of J(t) in (3.28) is then easily estimated.

4. P R O P E R T I E S OF UQt

Hère again wef ixBêVfe) - We consider the solution uçit of the following Dirichlet problem on the moving
domain Qt = ^e(ty ÇÏQ)

(4.1)
int = 0 on dflf '

We will often write u(t) for uat. We will now make estimâtes on the "transported" solution ü(t) defined on the
fixed domain QQ by

Then u(t) is solution of a new problem on the fixed domain, namely

-L(0, t )û( t) = fco$e(t) on îlo ,û(t)=O on düOi (4.2)

where L(@yt) is the differential operator explicitly given by:

(4.3)

D^ + [dl^l + dl29\]D[ (4.4)

where ^t = $e(0~1- We then have the following main estimate.

Proposition 4.1. There exists a function a; : [0,1] —> R wtth UJ(0+) = ]imrio u(r) ~ 0 ("modulus of continu-
ity") such that:

SUp \\ü(t) - UQO\\C2(QO) < Uj(\\Q - I d R 2 | | 2 , a ) . (4.5)
te[o,i]

Remark. The modulus of continuity UJ dépends on the regularity of the right-hand side k in (4.1). If we assume
k of class C2, then one can choose iü(rf) = Crj and even have the C2'a norm instead of the C2 norm. More
comments and indications of the proof of this remark may be found after the proof of the proposition.

Proof of Proposition 4-.1. The main idea is here to use Schauder's estimâtes in Hölder spaces for the solution of
the Dirichlet problem governed by an uniformly elliptic operator with Hölder continuous coefficients. Indeed,
we have:

Lemma 4.2. Assume rj2 is small enough. Then, there is a constant U dependmg only on the data and on the
C2>a-norm of 0 such that for all t G [0,1]

a1fi0 <U. (4.6)
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Proof of Lemma 4-2. Let us first remark that the operators L(Q,t) are uniformly elliptic. Indeed, the part of
second order of L(0, t) can be written matricially as

This proves that A(Q,i) is a symmetrie nonnegative matrix. Since detD^t = 1 ^ 0, it is positive définit e.
The smallest eigenvalue being a continuous function of t, it is uniformly bounded from below on the compact
interval [0,1]. Actually the bound dépends only on the C2'a-norm of 0 if 772 is small enough since

\\D9t
 fD^t - Id|| < \\D9t

 l

< | | * t -

Now, since tyt = ^eC*)"1 is of class C2jOi, the coefficients of L(0, t) are C°'a with a norm depending only on the
C2'a-norm of ^eC^)"1) that is also on the C2>a-norm of 0. From classical Schauder's estimâtes applied to the
équation (4.2) (see for example [10]), there is constant C depending only on the data and on the C2'a -norm of
0 such that

Since k G C°'a and $e(£) ^ C2'a, then k o $0(t) e C°'a and the Lemma 4.2 is proved.
We can now finish the proof of Proposition 4.1. We define eu as

2[, co(v) := sup \\ü(t) - uno\\

Lemma 4.2 guarantees that this quantity is well defined, and we just need to prove that Ü;(0+) = 0. This follows
from the compact embedding of C2'a(^o) into C2(Ù0). Indeed, if Ü;(0+) ^ 0, there are a > 0 and séquences
tn e [0, l ] , e n € V(rj2),ttn - ^Qn(tn,n0),ün = uan o ̂ @7l{tn) such that

He„- Id R 2 | | 2 , a< l /n , (4.7)

\\ün ~ UQQ ||C2(Ö0) > a > 0. (4.8)

The séquence ün is bounded in C2>a(Ü0) and by compactness, there is a subsequence converging in C2(Ù0) to
some uitm G C2(ÙQ) and a subsequence of tn converging to some tum £ [0,1]. We then remark that

L(Qn,tn)ün - Auiim = \L(Qn, tn) - AJ ün + A \un - ui imj.

Passing to the limit a s n ^ o o shows that uum is solution of the équation

Au = k in fioj
u = 0 on 9^0-

This is in contradiction with (4.8) as the Dirichlet problem has a unique solution in C2(Ö0) namely UQ0. This
proves that o;(0+) = 0.

Remark. As a conséquence of Proposition 4.1, ü(t) is continuous into C2(Ù0) at to = 0. Since to = 0 is
not particular for problem (4.1), the same is true for t —» u(t) o $e(£) o ^G(^O)~1 at £ = t0 G [0,1] and, by
composition:

t G [0,1] -> ü(t) G C2(^o) is continuous. (4.9)
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Remark. Another approach to estimate a norm of the différence ü(t) — UQQ would be the following. For
simplicity, we set uo := un0 and k(t) := k o <3>e(£). We have from (4.2) and from (4.1) with t = 0

-A(û(t) - uo) - k{t) - k + [L(9, t) - A](û(t)). (4.10)

Since &(£) — uo = 0 on dQo, we can apply the Schauder's estimâtes again to (4.10)

R t ) - uolkaA, < C \\k{t) - fcHo.a.no + II[i(O, t) - A](fi(t))||ofûlno.

Thanks to the C2'a estimate of Lemma 4.2, the C0)Qi norm of the second term of the right-hand side is easily
estimated by ||$©(£) — Id||2,a- But, even if k(t) — k is indeed in C0>a;, its C°'a-norm cannot be estimated in terms
of | |*e(t)-W| |2,a.

What one can at least say is that:

By interpolation, for e 6 (0, a), we get an estimate of \\k(t) — fc||o,e with a modulus of continuity in rja~e. This
yields (4.1) and even a C2'€-estimate with an explicit modulus of continuity. One can also check that, if k is of
class C2, then, the C°'a-norm (and even the Lipschitz-norm) of k(t) — k can be estimated by C \\$&(t) — Id||2,a.
Then one obtains a C2:a-estimate of ü(t) — UQQ .

5. PROOF OF THE THEOREMS

Again, we fix 0 a difleomorphism in V(r/2) such that meas(©(Qo)) = meas(Qo)- As in the previous sections,
we consider the function TUQ, the vector field XQ = men, $0 , the domains üt = ^e(t,ÎÎQ), the solutions
u(t) = Uf2t, ü(t) = u(t) o $e(t). As announced in the introduction, we study the second derivatives of
t € [0,£] —• E(Ctt) + Ameas(fit). Since, \/t e [0,1], meas(üt) = meas(Qo), it coincides with the second
derivative of t —> E(Q,t). We dénote

To compute the second derivative, we use the following classical lemma [6,16,21].

Lemma 5.1. Let H : [0,1] x R2 H-> R be such that H, dtH, VH G C([0,1]; Ll(R2)). Then

,x)dx = [ ~[dtH(t,x) + àiv{H(t,x)Xe(x)}]dx. (5.1)
Jnt

Remark. As usual in shape differentiation, this lemma may be extended to functions defined only on £2f If for
instance (this will be enough for us hère),

F(t)o^eWGC1([0,l];C0(no))nC0([0,l];C1(^o)), (5-2)

then we may define d±H{t) € C°(Üt) in such a way that (5.1) remains valid. This may be done through a given
linear continuous extension operator V from Ck(Ùo) into Cfe(M2), k = 0,1, 2. We set

H(t):=V(H(t)o$@(t))o<ï>-l(t), (5.3)

and, by définition dtH(t) := dtH{t) on Üt (note that H(t) and H(t) also coincide on Clt). Applying Lemma 5.1
as stated above to H yields the formula (5.1) for H.



~A(dtu(t)) = 0
9tw(t,$e(*)) + (
or also dtu(t) +

Vu(t, $
(V«(t), = 0

0)) = o
in

on
on

Ht,

dût.
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Here, ü(t) — u(t) o ̂ ©(t) is continuous into C2(ÜQ) (see (4.9)) so that its extension ü is well-defined. As we
will see below, its derivative dtu(= dtü) is well-defined and

dtuo$Q(t) e C^O^iCHÖo)). (5.4)

We will use this in the next computations and we will often write u for ü.
By differentiating formally (4.1) with respect to t, we see that dtuit) should be solution of

(5.5)

Since Vu(t) e C1>a(3fit), classical regularity results from Schauder theory (see e.g. [10]) ensure the existence of
a C1>a-solution to this équation with a C1'a-norm uniformly bounded for t G [0,1]. Moreover, its composition
with $e(t) is continuous with values into C1(f20) since it is the case of t —» Vu(t) o $e(t). We easily deduce
that this solution is not hing but dtu and the formai computation is justified as well as (5.4).

Dérivation of the magnetic energy

We apply Lemma 5.1 to H = |Vn|2 = |Vü|2.

ilK*.-)llfli(n t)
=2/ (Vu(t,.),Vdtu(t,.))dx+ f dW[\Vu(t,.)\2X@}dx.

The first term of this sum vanishes since by Green's formula, we have:

/ (Vu(t,.),Vatu(t,.))dx= - f u(t,.)Axdtu(t,.)dx+ f u(t, .){Vdtu(t, .),nt)da.

This is equal to zero since u(t) = 0 on d£lt and Adtu — 0 on fît; (recall that we dénote by n^ the unit normal
derivative to f2*). So we obtain:

p ^ a : . (5.6)

As a first conséquence, using Green's formula, we have

£ [Ameas(a) + E(Qt)] = f [A - |V^0 |2](Xe,n)da.

Since ^o is a critical shape, we see on this formula (valid for any vector field in place of XQ) that A = \VUQO\2

on dQ,Q as announced in (2.4).
Next, applying Lemma 5.1 (at least formally, see below) to the expression (5.6) leads to the second derivative

K*)ll t )= / div[dt\Vu(t,.)\2Xe}dx+ f div{div[|Vu(i,.)]2Xe]X0}dz. (5.7)
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As such, these expressions may not be defined, but we intégrât e by parts and we set

e£(t) = -2B( t ) -A( t ) , (5.8)

B{t)= [
Jdnt

where we used that div X e = O to simplify the expression of A(t). To justify this computation, we may apply
Lemma 5.1 to Hn(t) — div[|VÏ7n(t)|2X0] where Un are regularized approximations by convolution in RN of ü.
Because of the regularity of ü at the boundary, the convergence under the intégrais holds uniformly,

The study of A(t)

We first change variable in the intégral on the moving boundary to get an intégral on the fixed boundary.
The Jacobian we need is estimated in (3.28) of Proposition 3.4. We use also that

and the similar formula with \Vu(t)\2 in place of u(t).
We will simply write $t for $e(t), X for X Q , m for me, X(t) for J e o $e(t), fh(t) for TUQ O $e(£) a nd

nt{t) for nt o $0(t) . Note that by (2.10), (3.15), n o $0(t) = n on T(Î]2). We obtain

A(t) -

= f

The goal is now to estimate A(t) — A(0). We set

( ) ( ) ( ) ^ ^ ^
2(t):=(n,nt(t)>, a3(t) := J(t).

We dénote by C any constant depending only on the C2)ö:-norm of 9 and we set 77 := ||Q — Id^l^a- We have
the following estimâtes for i in {2, 3} and for all t in [0,1]

This is coming from (3.27) in Proposition 3.4. For i — 1, we will prove below the following for all t in [0,1]

liaiWIU~(an0) < C, ||ai(i) - ai(0)|Uoo(ôno) < Cwfe), (5.10)

where co is the modulus of continuity appearing in Proposition 4.1. Next, we also have for all t in [0,1]

ho{t)h^dn0) < C\\m\\L2(dQo), ||o0(t) - a0(0)||L2(ano) < C7]\\m\\L2{dQo). (5.11)

This is the content of the first part of Proposition 3.2. Now, we write

A(t)-A(0)= f [ao(t)
2 - ao(0)2] JJ *

JdQ° i=l,2,3 i=l,2,3 «=1,2,3
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The second intégral is bounded by C I I ^ I I ^ ^ Q N \\ Yli=i 2 3 a^) ~ FL=i 2 3 az(0)lloo- We easily check that

az(t)- H 0,(0)1100 < C
«=1,2,3 2=1,2,3 2=1,2,3

the last inequality coming from (5.9, 5.10). Next we will assume for simplicity that u{vj) >CT).
The first intégral in (5.12) is bounded above by

o) < C77 ||

where we used (5.11) for the last inequality. Finally, for all t in [0,1], we get

\A(t) - A(0)\ < Cu>{7,)\\m\\2
La(gnoy (5.13)

It remains to prove (5.10). The L°°-bound on a\(t) is obvious from the C2-estimates of Lemma 4.2 on ü{t). For
the L°°-estimate on the différence, inserting V^ D$JlVü(t)\2, we obtain a first bound by

|2 | |oo.C fD^Ï1 ~ Id||co + C HVI*!?^"1 Vû(t)|2 - V|Vw(0)|2

Using the C2-estimates of Proposition 4.1 for the second term, we prove that this is bounded by Cto(r}).

The study of B(t)

Recall that

-^(0 = / (Vdtu(t)1
1\/u(t)}(X<:

As u(i) is constant along dVt^ its gradient is normal and therefore

If we dénote dntu := (Vit(t),nt), we deduce that

(Vdtu(t)yVu(t)) - dntu(Vdtu(t),nt), (5.14)

Since also XQ = mn: the boundary condition for dtu(t) may be rewritten (see (5.5))

dtu(t) -\-mdntu{nt,n) — 0 on dVtt. (5.15)

Let us now introducé the Steklov-Poincaré operator Ct on Qt defined from Hl^2{dVtt) into H~1^2(dQt) as
follows: if z G H1^2(dÇlt), we consider the harmonie extension Z of z to Q,t

 a n ( i w e define Ct(z) := (VZ,n^).
For the properties of this operator, one can refer for example to [5]. A simple computation shows that,

zCt(z)= f

this, at least for regular enough functions z (in gênerai, the first intégral is to be replaced by {z, Ct(z))Hi/2x#-1/2).
Then, if we set z(t) := —mdntu{nt,n), we have by (5.5, 5.14, 5.15)

(Vdtu(t):nt) = Ct{z{t)), {Vdtu(t),Vu(t)) = dntuCt(z(t)).
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This gives a new expression for B{t):

B(t) = - [ z{t)Ct{z(t)) = -

where Z(t) is the harmonie extension of z(t) to f2t. We also dénote Z(t) := Z(t) o $ t , z(t) := z(t)o$t. We then
have to estimate

B(t)-B(0) = f |VZ(0)|2- f

(recall that the Jacobian detL><I>t is here equal to 1). We dénote again by C any constant depending only on
the C2'a-norm of 0 and we set again 77 := j|© — Id^2 ||2,a:-

Lemma 5.2. We have the following main estimâtes: for all t G [0,1]

< C ||m||ffi/2(ano), \\z(t) -

\\Z(t)\\HHnQ) < C | |m||Hi / a (ôno) ) \\Z(t) - Z(Q)\\HHno) <

Assuming this lemma, we obtain

\B(t)-B(0)\ < W'D^VZit) + VZWU^DQ-'VZit) - VZ(0)||La

< C \\m\\m/2{dno) [W'D^1 VZ(t) -f D^

o)[HVZ(t) -

This together with (5.8, 5.13) finishes the proof of Theorem 2.5. It only remains to prove Lemma 5.2.

Proof of Lemma 5.2. Recall that

z(t) := -mdntu(ntin)} z(t) := z(t) o $ t .

From Lemma 3.3, we have

Prom Propositions 3.4 and 4.1, we easily deduce the first estimate on z in Lemma 5.2. For the différence, we
write

z(t) -z(0) = z(t)+m(Vwo,n) =m[(Vw0)n) - (3ft ttio$ t)(nÉJn)].

Again, by Lemma 3.3, we have to estimate the C1-norm of (VT/O, ̂ ) — (9nt^ ° <ï>t){^t)^) which is bounded by
the sum

|KVTio,n)(l- (fit,n})||Ci + ||{nt,

The first term is estimated as expected by Ct] thanks to (3.27). The second one dépends on the C1-norm of
(Viio,Ti) — dntuo <î>t = (Vuo.n) — ^D^^ 1 ^ 7 ^) )^^ ) ) - We use Propositions 4.1 and 3.4 to estimate it by u)(r])
and the part concerning z in the Lemma is complete.
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Since Z(0) is harmonie on QQ with value z(0) at the boundary, we have

l|Z(0)||tfi(no) < C\\z(0)\\H1/Hdno) <C\\m\\H1/2{mo).

The estimate on the iJ1-norm of Z(i) — Z(0) starts with the équation

L{Q,t){Z{t)) = 0 on ÜQ,

which we rewrite

-A(Z(t)-Z(0)) = [L(G,t)-A](Z(t)) on Qo.

This implies that

\\Z(t) - Z(0)||„1(no) < C [\\m - z(0)||Hi/a(ano) + ||[L(e,t)

The first term has just been estimated by Cu){rf)\\m\\Hi/2^dçi0y As we check below, for all w
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We now décompose

\L(G,t) - A](Z(t)) = [L(Q,t) - A][Z(t) - Z(0)}

to obtain

\\[L(e,t) - A}(Z(t))\\H^ino) < CV\\Z(t) -

Together with (5.16), this implies

\\Z(t) - Z(0)\\HHQo)(l -

from which we deduce the last estimate of Lemma 5.2.
It remains to prove (5.17). We do it by duality as follows. Let I/J G Cg0, then

,t) - A]w rj, = f iYsKjit) - ah3(0))DhJw

where aï.J)6l are the coefBcients of L(B,t) (see 4.3). Now

- I f [D3(ah3(t) - ah3[Jn0

- b%(0))Dxw]

(5.16)

we have

(5.18)

The estimate (5.17) follows.
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Proof o f Theorem 2.1. Let Q e V(rj) where r\ is small enough so that Theorem 2.5 applies. We write Taylor
formula at order 2 for t —> ee(t) + Ameas(fi t) which is of class C2 . As meas(îît) is constant and Qo is assumed
to be a critical point for the constrained functional, e@(0) — 0 and the Taylor's formula writes

f ( 1 - * ) e £

e@(0) = -2B(0) - A(0) = [ 2z(0) C0(z(0)) - m2(V|Vwo |2, n) .
Jdn0

We have

[
Jdn0

Hère z(0) — —m (Vtto, w) and |(Vwo, ̂ ) | 2 = |VUQ|2 = A. On the other hand (see below),

<V|Vtxo|2,n) = - 2 A C (5.19)
where C is the curvature of duo seen from inside. Therefore

e£(0) = 2 A / mCo(m) + C m2, (5.20)

which is the expression we announced in (2.7). Now, m is of class C2 'a and satisfies (see (3.21)) JdQ m — 0. By
assumption (2.8),

<&(0)>c\\m\\a
HUHaao). (5.21)

Recall that this occurs when ÇLQ is convex for example. But by Theorem 2.5, we have for ail t G [0,1],

e&(i) > 4 ( 0 ) - Cu{r}) | |m| |^ 1 / a ( 8 n o ) .

Therefore, there exists TJQ > 0 such that, for ail 0 E V(?7o) and V£ 6 [0,1],

and

which is strictly positive if m -^ 0 whence the theorem.
Let us finally check (5.19) by the following elementary local computation (inspired from [7]) where we assume

that OQ is locally above the graph of the function ƒ : (—e, +e) —> M with ƒ(0) = /'(O) — 0. For simplicity, we
write u instead of UQ that is; UQ = u(x,y). The function u is such that:

\fx e ( -e ,+e) , ufa;, / (x)) = 0, (VuOjn) - -Uy{xJ{x)).

By differentiation, we have

Q = ux(xJ(x))+uy(xJ(x))f'(x),

0 - ^x(a:, ƒ (a:)) + 2uxv(x, f(x))f'(x) + % y (x , ƒ (x))/'(x)2 + % (x , ƒ (x)) ƒ" (s),
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which gives at x = 0 : 0 = 1^(0,0), 0 = uM(0,0) + uy(0y 0)/"(O). We also have

(V|Vuo|2,n> - -dy{{ux)
2 + K ) 2 } = -2{uxuxy+UyUyy).

Recall now that the right-hand side k in (2.4) is compactly supported in fi0- By regularity, we have uxx+uyy — 0
on the boundary. Therefore, at x = 0, we obtain

<V|Vuo|2,n) = 2uy(0,0)uxx(0,0) = - 2 K(0,0)) 2 /"(0),

and (%(0,0))2 = |Vwo|
2 = A. The formula (5.19) follows since /"(O) = C.

Remark. If we do not assume k to be compactly supported in fiOï then we have to use uyy = —uxx — k instead
so that

We know that |{Vuo,n)| is constant on ôfio and equal to A1/2. Assume d£lo is connected. Then, by regularity,
I) itself is constant and equal to eA1/2 with e = +1 or —1. The sign is determined by the relation

/ k = / -Auo = / -(Vwo,n) = -eA1/2length(dQ0),

which shows that e = — sign(Jfi k), Finally, the second derivative becomes

e'é(O) = 2 A ƒ mC0(m) + m2 [C - fcA~1/2sign( / fc)]. (5.22)

6. ABOUT THE COERCIVITY OF e@(0)

If k is compactly supported in fio» then expression (5.20) is valid. Note that then the stability dépends only
on the geometry of dfto. If moreover dD,Q is convex, then the coercivity (5.21) holds. Obviously, this extends
to curves C2-close to convex curves.

If k is identically equal to a positive constant, then any disk of radius R = \[Sjï\ is a critical shape. We
have kS = A1/2

 2TTR and by (5.22)

f 1 !
ee(0) = 2A / mCo(m) — — m = 2A([Co — —Id](m),m)H-i/2xHi/2.

JdQ.0 R R
We easily check that this vanishes for m = sin 9 and m = cos 0 so that e@(0) does not satisfy (2.8) or (5.21).
This obviously corresponds to the fact that the disk remains a critical shape when moved by translation. One
can check that e@(0) is however positive on the set of wls orthogonal to the linear space spanned by {1, cos, sin}
and this is also a conséquence of Theorem 2.5 (see e.g. [11,14]).

One may also compute what happens for radial fonctions k. Then the disk centered at the origin and of
radius R = ^/S/TT is a critical shape and (we assume for instance JQ k > 0)

e@(0) = 2A / mCo(m)+m2[— -

We easily check that

[ mCo(m) > — / m2.
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Therefore, for rj positif and small

4(0) > 2A{v\\m\\%1/2 + / ^ [ 1 - ^ -
dQo R 2 JQ0

k

so that e£(Q) is coerciYe if

More detailed studies of such quadratic forms may be found in [11] where rnore gênerai functional involving
the perimeter of the shapes (ie. surface tension) are considered. Moreover, the case of the less stable "exterior"
problem (or "exterior shaping problem" ) is also treated where the Dirichlet problem is set in the exterior of the
shapes. The positivity is then more difficult to study. An extension of the results of this paper to the case with
surface tension can be found in [4] as well as iV-dimensional situations.

Acknowledgernents, We thank Michel Crouzeix for several helpful discussions and Jean Descloux for pointing ont to us
this stability question.
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