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RIGOROUS DERIVATION OF KORTEWEG-DE VRIES-TYPE SYSTEMS
FROM A GENERAL CLASS OF NONLINEAR HYPERBOLIC SYSTEMS

WALID BEN YOUSSEF1 AND THIERRY COLIN1

Abstract. In this paper, we study the long wave approximation for quasilinear symmetrie hyperbolic
Systems. Using the technics developed by Joly-Métivier-Rauch for nonlinear geometrical opties, we
prove that under suitable assumptions the long wave limit is described by KdV-type Systems. The
error estimate if the System is coupled appears to be better. We apply formally our technics to Euler
équations with free surface and Euler-Poisson Systems. This leads to new Systems of KdV-type.

Résumé. Dans cet article, nous étudions l'approximation de type ondes longues pour des systèmes
hyperboliques quasi-linéaires symétriques. En utilisant des techniques développées par Joly-Métivier-
Rauch pour l'optique géométrique non linéaire, nous montrons (sous des hypothèses convenables) que
la limite onde longue est décrite par des systèmes de type KdV. L'estimation d'erreur est d'autant
meilleure que l'on conserve les couplages dans ces systèmes. Nous appliquons formellement ensuite
notre technique aux équations d'Euler avec surface libre et au système d'Euler-Poisson. Cela conduit
à de nouveaux systèmes de type KdV.
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1. INTRODUCTION

1.1. Setting up the problem
This paper is mainly concerned with the exact dérivation of Korteweg-de Vries type Systems in one di-

mensional space, starting from generic quasilinear and symmetrie hyperbolic Systems. The Korteweg-de Vries
Systems are considered as asymptotical équations as the amplitude of the wave is considered small whereas
the wavelength is large. The KdV équations occur in several physical situations such as plasma physics [23],
meteorology and more importantly in the shallow water-waves context, which is the historical background in
which Korteweg and de Vries obtained their resuit in 1895 [19].

As we said above, we present a systematic study of long wave approximation. More precisely, one considers:

Eu€

dtu
e + A(dx)u

€ + — = B{u€)dxu
€. (1.1)
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The function ue(x,t) is a M^-valued function, where x lies in R and t is the time variable. The nonlinearity
is taken to be as simple as possible in the quasi-linear context. Vu G M,NyB(u) is a symmetrie matrix and
u f—> B{u) is linear so that the System has a quadratic nonlinearity. We assume that the N x N matrix A is
symmetrie and real and that E is a N x TV skew-symmetrie matrix. To finish, this description, let us suppose
that E is non invertible in order to dérive non trivial approximate solution.

Our aim is to dérive from the hyperbolic équation (1.1) KdV Systems. In order to do so, we keep in mind that
we need our approximate solutions to approach small amplitude solutions with large wavelength and be governed
by a System where nonlinear and dispersive effects exist at the same long time scale. There are two types of
KdV Systems: the coupled Systems and the uncoupled ones which are nothing else but a pair of independent
KdV équations each one of which describing a propagation in opposite directions. One of the motivation of
this study is to establish a distinction between these two models as we prove that they do not approximate the
exact solution of our problem (1.1) at the same Ie vel of accuracy with respect to the small parameter e.

Note that the problem of the rigorous justification of the KdV équation from the Euler équations with free
surface has been solved by Craig in [11]. Recently Schneider and Wayne [21] have extended this result to the
case where two directions of propagation are present: they obtain a set of two uncoupled KdV équations. Her e
we study this problem, in a gênerai framework, namely starting from System. (1.1). And we dérive Systems of
two uncoupled KdV équations as well as coupled Systems of KdV type and we compare both approximations.
Our results do not apply directly to the water-wave problem nor to the Euler-Poisson problem (both presented
in the last section) since these Systems can not be written under the simple form (1.1). We postpone this study
for a latter work.

Notations

Within the course of this paper, the norm L2 in space will be denoted as ||.||2, whereas the Hs norm of a
function u will be denoted as ||u||s = ||(1 H- ̂ 2)s^2û\\2-

1.2. Formulating the ansatz

Our aim is to study the behavior of solutions for the System (1.1) for time scales where the nonlinearity and
dispersion compete at the same order with respect to the small parameter e in the leading order term of our
approximate solution.

Following the work of [12,14,15,20], in the context of geometrical opties, one ought to set our ansatz a priori
as follows,

W(x,t) = epu{x,t,eqt)

where ep is the size of the solutions and t\ = tqt the long time variable at which our above intentions must meet
their requirements. Note that we have here only two scales compared to the three scales of classical geometrical
opties where one has to take into account the oscillatory nature of light by adding a scale for high frequencies
and oscillatory modes, which does not fit our physical context here. From the degree of the nonlinearity in the
set up of the problem and the présence of the parameter e in the dispersive term of (1.1), (p, ç) must satisfy
pJrq = 2p=^p~qto have the nonlinear contribution occurring at the long time scale t\ and q must be equal
to 2 for the third order dispersive term to be present at the same time scale, considering the nature of the
nonlinear term.

Therefore, we start off with an ansatz, with t and t\ — e2t, namely the short and long time variable, that
reads,

3
+%0M,e2£). (1.2)

With this model, the nonlinear contribution occurs in large time scales of order O(^) along with the dispersive
effects as it was our aim in the construction of (1.2).
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Before going any further, our ansatz can be described as follows: UQ is the leading order term whereas u^ u2

and W3 are supposed to be correctors, which means that they remain smaller than UQ for ail times. Besides our
intention is to study the behavior of the leading order term for large time scales of order O(^r) which implies
that the overall expansion (1.2) must be valid for such times. Hence, one must control, somehow, the growth
in time of the corrector terms. Thus, to make sure that these terms are indeed correctors on time intervals of
the form [0; O(^)], we assume that they satisfy a priori an analog of a sub-linear growth condition introduced
in [14,20], that reads for any function a sufficiently smooth in our case as:

Sub-squareroot growth condition

The function a(x,i,i ) satisfies a sub-squareroot growth condition if only if

lim -^| |9^ ia(x,t , t1) | |2 = 0 for all a G N3. (1.3)

Remark 1.1. In fact we will show in the course of this paper that the correctors are even better controlled
since they are most of the time L2-bounded in time.

We now plug in (1.1) the ansatz (1.2), assuming that the Uj are smooth enough and we get

10

dtW + A{dx)W + -EW - B{Ue)dxU
e = Y ] Jr, (1.4)

where the Vj are given by

7*1 = Eu0

r2 = 8tUQ + A(8X)UQ + Eui
r3 = dtui + A(dx)ui + Eu2

r4 = dtluo + dtu2 + A{dx)u2 -f Eus — B(uo)dxuo

^ = dtlui + dtus + A(dx)u3 - B(ui)dxu0 -
re = dtlu2 - B(uo)dxu2 - B(u2)dxu0 -
ri •— dtlU3 - B(u3)dxuo - B(uo)dxu3 - B(ux)dxu2 - B(u2)dxui
r8 = -B{u%)dxui - B(ux)dxu3 - B(u2)dxu2

r9 = -B(us)dxU2 - B(u2)dxU3
r10 = -B(u3)dxu3.

Our strategy to construct an approximate solution of (1.1) up to to the order 4 is to solve simultaneously the
four équations rj = 0 for j = 1, 2, 3,4. These équations will be referred to as the profile équations and constitute
a set of necessary conditions for W to be an approximate solution. They read

r i = 0 => EUQ^Q (1.5)

r2 = 0 = > dtuo + A(dx)u0 + Em = 0 (1.6)

r3 = 0 = » dtui + A(ôx)ui + Eu2 - 0 (1.7)

r4 = 0 = > dtlu0 + dtu2 + ^4(9^)^2 + Eus = B(uo)dxuo. (1.8)

The paper is organized as follows: in Section 2, we dérive necessary conditions on the unknowns from équa-
tions (1.5)-(1.8) and establish the équations satisfied by the profiles uo:ui,u2 and U3. We show that UQ =
U01 4- U02, where each function ttoi, U02 has to solve a KdV type équation.

In Section 3, we prove that the set of équations obtained in the second section can be solved and that the
function e3ui 4- e4u2 + €,5us is a corrector with respect to the first term of the expansion (1.2) and finally we
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prove in Theorem 3,1 that there exists a solution u€ of (1.1) such that

||ne - e2u0(x,t,e2t)\\Loo([Q^].Hs) = o{e2) as e-> 0.

In Section 4, we show in Theorem 4.1 that, if one modifies slightly the ansatz, on can find two functions (uoi) ̂ 02)
satisfying a System of KdV type such that

\\u€ - e2Uö\\Loo{[0^].Hs) = O(e3) as e -> 0.

The error estimate is therefore better if one keeps some coupling between the two components of tto-
Finally in Section 5, we apply the second section to Euler-Poisson and Euler with free surface problems and

dérive new asymptotical models.

2. E Q U A T I O N S FOR T H E PROFILES

2.1. Algebraic solvability conditions

Following the analysis used in [14,15,20], we introducé some formai operators in order to modify and simplify
our set of profile équations and find a simplified set of équations satisfied by UQ.UI, U2 and u%.

Définition 2.1. For (r, £) 6 l x R , let us dénote by L(r,£) and Li(r, £) the following maps

•pp

L{T, 0 = rl + AÇ + - as well as L±(r, Ç) = rl + AÇ

and we dénote by II(T, £) the orthogonal projector on the Kernel of L(r, £). We also define Q(r,£) the partial
inverse of L(r, £) such that

Q(T, OL(T, O = L(T, $Q(T, 0 = 1- n(T, o
and

Q(r, On(r, O =U(T,0Q(T, 0 - 0 .

Let us point out that along the course of this paper £(0,0) will play an important role and will be denoted as
LQ along with 11(0,0) as ÜQ- Again IIo is nothing else but the projection on the Kernel of jE = LQ which is
symmetrie.

Following [16], we first define the characteristic variety of the operator L, such as

CharL = lp = (r, £) G R x R/det(r/ + AÇ + - ) = 0 \ • (2.1)f)-}
Since the operator L is symmetrie, we know that the polynomial équation in r i.e. detL(r, ^) — 0 has only real
roots for all ̂ . CharL can then be parametrized by a finite number of functions n(^). Thereafter, following [20],
Po = (TOÏCO) £ CharL is called singular if it coincides with the intersection of different functions rz(£). /?o is
called regular otherwise.

The main assumption is the following one:

Assumption 2.1. (0,0) is an isolated singular point of CharL of multiplicity 2. There exists a regular function
defined on a neighborhood of 0 such that A(0) = A"(0) = 0 and A'(0) ̂  0 with (A(^),^) € CharL and

From Assumption 2.1, we dénote by üi(^) and Ü2(£) the two projectors
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FIGURE 1. The characteristic variety around 0.

These two projectors are nonzero since À and -À are eigenvalues of L. We dénote also by Iï(£) the projector
Ilifé) + n 2 ( 0 and one has that n 0 = 11(0) and n'o = n'(0).

Remark 2.1. Since all the operators herein defined are analytical with respect to £ around any point of the
characteristic variety, these operators can be extended to 0 [17].

We intend now to use all these operators in order to solve the équations of the profiles (1.5)-(1.8), that are
of the type L(ry £)a = b for any a, b in M.N. For that matter, we state the following straightforward lemma, that
is easily deduced from the symmetry of the operators.

Lemma 2.1. For any a, b G RN

2.2. Conséquences for the profile équations

One turns now to the resolution of the set of équations (1.5)-(1.8).

• The first équation (1.5): EUQ = 0, from Lemma 2.1 reads as

= u0. (2.2)

This équation is non trivial since we assumed that LQ is non invertible.

• The second équation (1.6): dtuQ + A(dx)u0 + Eu\ = 0 reads as

which is equivalent from Lemma 2.1 to the following necessary solvability conditions

0 = iHoLi(dt,dx)uQ = 2noLi(ôt,ax)noUo thanks to (2.2)

(J-IIo)ui =iQoL1(dt,dx)uo = iQoLi(dtidx)Uouo thanks to (2.2).

• The third équation (1.7): dtu\ H- A{dx)u\ + Eu2 = 0 reads as

(2.3)
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which is equivalent, using Lemma 2.1 again, to

Hl0L1(dudx)ui = 0
(2.4)

-UQ)u2 =

We décompose in the first équation u\ = ÏIQUI + (/ — IIo)i4i and use (2.3) to obtain the following equivalent
solvability condition.

(2.5)
-UQ)U2 = i

• Let us turn now to the fourth profile équation (1.8), where the nonlinearity and the long time évolution
appear: dtlu0 + dtu2 + A(dx)u2 -f Eu3 = B(uo)dxuo, that reads

Lott3 = *ôtluo + iLi(dt, dx)u2 - iB(uo)dxuQ

which is again equivalent to, thanks to Lemma 2.1

(2.6)
(ƒ - no)ti3 = ïö t l öo^o + iQoLi {du dx)u2 - iQoB(uo)dxuo.

Decomposing u2 with the projector ÜQ and using (2.5), the first équation in the above system becomes,

dtlUoUo -i-UoLi{dt,dx)UoU2 + id0Li(dt,dx)Q0Li(dtjdx)ui = noB(uo)dxuo

which again gives using (2.3) and writing u\ = ÜQUI 4- (/ — IIo)iti, the following equivalent system to (1.8)

dtlUouo -^UoL^dt.d^Uo^ -^ iUoL^dt.d^QoLxidt.d^UoU!

,3iB)nouo = noB(uo)axuo (2.7)

t, dx)u2 - iQQB(uQ

The équations obtained (2.2)-(2.7) constitute our set of solvability conditions on the profiles u®, ÜI, U2

and uz-
The last équation (2.7) is at this stage, the équation in UQ {e.g. the principal term in the expansion) that

contains nonlinear terms and dispersive third order terms in the long time évolution of UQ and our ansatz was
specifically constructed for this reason. In order to use the properties of our problem {e.g. the particular form
of Char L), one needs to project this équation "on both branches of the characteristic variety", to be able to
dérive as claimed, KdV type Systems either coupled or uncoupled with two component s moving in two opposite
directions, defined by each branch in Figure 2.1. We begin by describing the differential operators arising
in (2.7).

The operator HoLi{dty dx)Ho

To begin with, it is essential to understand the operator II(T, t;)Li(dt> dx)Ii.{r, £) both in 0 {e.g. (r, Ç) = (0, 0)
and 11(0,0) = n0) as well as on the branches of Char L on regular points. Indeed, when (r, £) is not a singularity
of the characteristic variety, U(r^)Li(dt, dx)ïl{r^) happen to be a simple scalar operator. This result is well
known and proved in [14,15,20]. We give the proof here for the convenience of the reader and also because this
proof leads to the result at £ = 0.
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Lemma 2.2. If Assumption 2.1 is satisfied, for ail £ in a neighborhood of 0 and £ ̂  0, we

(2.8)
A' (

set, for any £ G R,

0] • (2-9)

Proof of Lemma 2.2. We recall that by définition one has

^ + )II(O

We differentiate this équation with respect to £ and obtain,

(A'(0 + A)Ux{0 + (A(0 + Ai + ? ) n i ( 0 = 0. (2.10)

Applying IIi(^) on the left side gives,

lia (0(^(0+^)11! (0=0

which yields the first relation in (2.8) and the second relation is obtained likewise with n2 ,
To dérive the last relation (2.9), we develop the operator

= ni (0 AU, (o + n2 (o AU2 (O + nx (0 An2 (0 + n2 (0 AÏÏ!

In order to evaluate the crossed products, we apply the projector n2(£) on (2.10),

n2(0(A'(0 + ̂ )ni(0 + n2(0(A(0 + M + j )ni(O = o.

Then,
n2(0i«ii(0 + 2A(c)n2(oni(O = o

and likewise, we have that

nx(0An2(0 - 2A(on1(On'2(o = o.
Finally, we gather all the previous relations in the above development and obtain as claimed (2.9), which finishes
the proof. •

Corollary 2.1. At the singular point (0,0) of Char L, one has that, under Assumption 2.1

iWd t ,dx)n0 = &no - A W - (ni(o) - n2(o)). (2.11)

Proof. The proof of this corollary is straightforward from the previous lemma since it is simply the value of
the order 1 operator (2.9) extended to £ = 0, using the fact that the projectors u i and II2 are analytic on a
neighborhood of 0. •

We therefore obtain from (2.3) and the previous Corollary 2.1, the following fundamental transport proposi-
tion for each component of UQ .
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Proposition 2.1. One has

(2.12)
A'(0)3*^2(0)^0 = 0.

The operator n0Li(d t ; öx)Q0Li(o t ; 9x)n0

At a regular point of the characteristic variety, one has that, as it is proved in [14],

Here, since (0,0) is not régulai and A"(0) = 0, one has:

Proposition 2.2. The matrix TloAQoAHo is given by

u0AQQAn0 = 2A'(o) (n2(o)ni(o) + ni(o)na(o)). (2.13)

We deduce from this proposition the following corollary:

Corollary 2.2.

dt, ax)ni (o) = o
(2.14)

d^IlziQ) = 0.

Proof of Proposition 2.2. Let us introducé the ratio

The idea is to compute this ratio in two different manners as £ —> 0 to dérive the desired relation (2.13). One
has, using Lemma 2.2, that

which can be written as

n , « ) - V(o)

n i ( Q n , ( { ) _ 2

The operators üi(£) and Ü2(^) being analytical, they are, along with their derivative bounded around 0 and
since we assumed (Assumption 2.1) that A(0) = A"(0) = 0, we let £ —» 0 and obtain

hm <p(o = A'(o)(ni(o) + n'2(o)) + 2A'(o) pxCojn^o) - n2(o)n;(o)]. (2.15)

We go back to (p(£) and compute its limit in a different way. One can write

\ Û } \S / ' J-*U-IA l >-
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which gives lim <p(£) = ÜÓAIIo + IIO^4IIQ. TO evaluate the terms in the right-hand side, we differentiate the

following quant ity wit h respect to £, where II(£) is defined as in Lemma 2.2,

(A(0 + AÇ + | ) ( -A(0 f )n(0 = o
which gives

(A'(0- (A(0 )

+(A(0
E,

At ^ = 0, this reads as

A)-n0 + - ( -A ' (O) + A)n0 - E2n'o = o.
% %

=0

The first term is null since IIQ is the projector on Ker^- Thus,

EAUQ - Œ2nf
0 = o

and applying Qo twice on the right side of the relation above gives

Q0^n0 + (/ - no)n^ = o.

And likewise one obtains that

n0AQ0 + Uf
Q(I ~ n0) = 0.

It follows that
- A'(o)n[,(ni(o) - n2(o))

u0Auf
0 = -U0AQ0AU0 - A'(o)(nx(o) - n2(o))n^.

Equaling both expressions of lim ip(Ç), leads to
£ ^ 0

= o.

(2.16)

(2.17)

- A'(o)n[)(n1(o) - n2(o)) - A'(o)(ni(o) -
= A'(o)(ni(o) + i^(o)) + 2A'(o) (n^ojn'^o) - na(o)ni(o)).

This latter équation is simplified using straightforward algebraic relations on the projectors that we will con-
stantly refer to, namely

(2.18)

and the proof is complete. Ü
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The corollary follows in a straightforward manner from Proposition 2.2 thanks to relations (2.18).
With all these tools in hand, we apply IIi(O) on the first équation of (2.7), which gives, thanks to Lemma 2.2

and Proposition 2.2 and their corresponding corollaries

dxuo. (2.19)

Going back to the solvability conditions established earlier, it is possible from (2.5) to solve exactly u\ in terms
of uo. Indeed, applying successively IIi(O) and 112(0) on (2.5), one recalls thanks to Lemma 2.2 that

thanks to Corollary 2.2

and likewise

Thanks to Proposition 2.2, these two latter équations can be solved and one obtains:

ni(0)ui - ~-U1{0)AQöAU2{Q)dxu0 + IIi(0)i;i (2.20)

where V\ is an unknown function such that

(ft-A'(O)0x)ni(O)t;i = O.

And likewise for the second component

n2(o)«i = ^ rn 2 (o )AQoAn 1 (o )ö x U o + n2(o)«i (2.21)

with (ft + A'(0)dx)II2(0H = 0.
Plugging these values of IIi(0)ui and Ü2(0)ui in (2.7) and applying the projector Iïi(0) on the result yields

IA [0)

-n1(o)AQ0Ag0A[n1(o) + n2(o)]^«o - A'(o)n1(o)AQ^n1(o)ö^0 + A

(o) + n2(o)]«o)axiiouo. (2.22)

We replaced Li(dt,dx) by dt + Adx in the previous calculation. As we developed dt + Adx in some terms,
the derivative with respect to t reads simply as either A'(0)<9x or —A'(0)9x depending on the component of uo
to which it is applied, thanks to the transport Proposition 2.12. We obtain likewise the second fondamental
solvability équation for Ü2(O)uo:

o i i n i ( o ) « i r J 7 r

IA (V)

n2(0)AQ0AQoA[n1(0) + n2(O)]3xuo - A''(0)n2(0)AQlA

= na(o)B([ni(o) + n2(o)]u0)öa:no«o. (2.23)
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Transport operators

We introducé for convenience and clarity at this point some notations for the two transport operators that are
scalar, corresponding respectively to the transport along the tangent space of both branches of the characteristic
variety at 0:

T1(dt,dx)=dt-\'(0)d3l

(2.24)

and obviously one has, from Lemma 2.2, that

dx)n2(o) = T2(dudx)n2(o).

Comments on (2.22)-(2.23)

Let us make a few remarks on the previous équations (2.22) and (2.23). For large times of order O(^) ,
both the nonlinearity and the dispersion occur in the évolution équations for UQ, which is separated in two
waves IIi(O)uo and n2(O)uo evolving in two opposite directions. As they are written in (2.22) and (2.23), these
équations do not constitute exactly a System of KdV type, mainly because of the présence of the corrector
u2 that we need to get rid of somehow. We dénote also the présence in both équations of dispersive terms of
order 3 in both directions. Besides the nonlinearities in (2.22)-(2.23) are in both case coupled in the sensé that
we come across combination of derivatives of quadratic polynomials of terms moving in two different direction.

In order to simplify these équations and dérive the KdV Systems as claimed, we introducé average operators
as in [20] to apply them on the two équations that govern the évolution of IA0. The aim of this technique is to
dérive supplementary necessary conditions that eliminate the corrector terms along with the dispersive terms
moving in the wrong direction. After this opération, the System (2.22)—(2.23) turns into as claimed, a pair of
two independent KdV équations for each component IIi(O) and Ü2(0) moving in two different directions.

2.3. Average operators

We must keep in mind that these operators are constructed in order to eliminate u2 from the équations (2.22)-
(2.23) governing the profile wo- We recall that U2 was supposed to respect some growth condition.

As in [20], an average operator is defined relatively to a transport operator. Hence for T\ and T2, we define
two average operators GTX and GT2 '•

Définition 2.2. For h > 0 and w sufficiently smooth,

fh1 fh

x, t,r) = - / w(x - A'(0)s, t + s,r) ds
™ Jo

X, t,r) = - / w(x + A'(0)s, t + 5, r) ds
h Jo

and

G T I W — n m

(2.25)
= lim G%2

h—»oo

when this limit exists.



884 W. BEN YOUSSEF AND T. COLIN

These operators were described and introduced in detail in [20]. We recall their properties and refer to [20] for
the corresponding proofs.

Proposition 2.3 (Properties of the average operator). Let T be a transport operator such that T(dt,dx) =
dt - cdX! then

(i) Ifw satisfies T{df> dx)w = 0, then GTW exists and GTW = w.
(ii) If w satisfies Tf{dt%dx)w — 0 where Tf(dt,dx) = dt — ddx and ij' c ̂  d then GTW exists and GTW = 0.

(iii) Ij w respects a sub-squareroot growth condition (1-3), then GxT(dt,dx)w is well defined and
GTT(dudx)w = 0.

(iv) LetW :=ww' where w andw' are such thatT(dudx)w = 0 andTf{dudx)w
f = 0. IfT{dudx) = Tf(dudx),

then GTW = W. In any other case GTW = 0.

The first two properties mean that when we apply Gr to the linear terms of the équations, it leaves only those
transported by T(dt,dx) and éliminâtes the rest. The third property allows us to get rid of the correctors in
the équations as it was the motivation in the construction of these operators. And the important last property
allows us to eliminate all the product terms where the factors are transported by different operators. And as
we said earlier, it is thanks to this last property that we will reduce dramatically the nonlinear terms and thus
uncouple the System (2.22)-(2.23) in order to dérive a pair of independent KdV équations for the évolution of
each component of UQ.

2.4. Conséquence for the profile équations

Obtaining the uncoupled system.

As we are looking for solvability condition on the System (2.22)—(2.23), let us apply the operator GTX on
(2.22) and GT2 on (2.23), which gives thanks to the properties of these operators

dtl Ü! (0)i*o + Gr^T^dud^u^ + ̂ - y Ü! (0) AQo AU2 (0)^00

=o property (iii)

=o property (ii) =o property (ii)

=0 property (ii)

In the nonlinear terms, only the terms polarized in the direction of IIi(0) remain thanks to Property (iv),
and therefore one has that, GTX {Hi(0)B(UoUo)dxïloUo) = ni(0)B(ni(0)uo)ôa;IIi(0)tto). Each component of
^o being either transported by 7\ or T2, some remain unchanged and other disappear thanks to Properties (i)
and (ii).
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We obtain similarly an analog équation governing n2(O)uo. Our System (2.22)-(2.23), reduces to the following
System for uo

(2.27)

U2{0)AQ0AQ0An2(0) + X'(0)n2(0)AQlATl2{0))

This System (2.27) is indeed uncoupled and corresponds to a pair of independent KdV équations governing each
component of u0 moving in opposite directions and u2 whose supposed to be a corrector vérifies

)
+ x'(0)11^0) AQ2

0AU2(O))

n2(o)B(n2(o)uo)0xii2uoT2{dt,dx)u2(o)u2 =

Remark 2.2. One can set v\ = 0 (the initial condition as we solved (2.5)) with no loss of gênerality since
it appears in the équation (2.22) polarized such as it ends up in the équation describing the corrector term
u2 (4.3).

2.5. Main algebraic lemma

The System (2.27) will read as KdV type System in a more obvious way, thanks to the following algebraic
lemma, regarding the operators of order 3, namely the dispersive terms, that gives:

Lemma 2.3 (Main lemma). One has the following relations

1
(2.29)

and likewise,

(2.30)

Proof of the main lemma. Let us start by proving the first relation. Use will be made in this proof of the
previous lemmas and in particular we start by a proposition concerning the behavior of the operators Qi(£)
and Q2(0 as £ tends to 0. Note that these two operators are defmed as expected as Qi(£) = Q(^(0i£) a n d
Q2(0 = Q(~M0) 0 an<^ a r e ïïieromorph with respect to the variable £ as a straightforward conséquence of the
analycity of the projector operators. D
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Proposition 2.4. Qi and Q2 admit the following expansion around 0 with respect to .

Q2(0 = Qo -
2A(0J

(2.31)

(2.32)

Proof of Proposition 2.4- From our original hypothesis laid out in the set up of the problem, one has that
AÇ + 4 is symmetrie and real for any £ in IL Therefore, there exists P(£) an orthogonal N x N matrix
such that

/-KO \

\ /
where the first two eigenvalues are those of interest in this paper and the matrix
to £. Thereafter, L(^) namely L(±À(Ç),Ç) reads as, on the same basis,

(2.33)

is analytical with respect

and consequently

and similarly one has that

whereas Qo which is the partial inverse of \E reads in a very straight for war d manner from (2.33) and Assump-
tion 2.1, as

/O \
0

p(o).

As we have expressed explicitly all the operators involved in Proposition 2.4, it is a straightforward task to
finish the proof. •

We dénote by I, II and III the three terms in the left-hand side of (2.29).
• From (2.13) in Lemma 2.2, the first term / gives immediately, using the algebraical relations (2.18), that

1 r
1 =

2A'(0) 1 = 2A'(o)n1(o)n/;(o)n1(o). (2.34)
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• For the second term II, one needs to compute the value of the operators of order 2 and order 3 at a regular
point of the characteristic variety. For that matter, we state the following proposition:

Proposition 2.5. If (A(£),£) is a regular point of the characteristic variety Char L, which in our case means
that £ y£ 0 in a bail near 0, then}

(0 = ^ Ü ! (0 (2.35)

Ẑ ï O (2.36)

and likewise for the second branch of the characteristic relatively to the projector n2(£).

Proof of Proposition 2.5. The first relation is not diffieult to establish and its complete proof can be found
in [14]. Briefly, one differentiates the relation

^ + - ) (2.37)

and apply ü i ( 0 on the right-hand side to obtain ni(£)n(£) = -QxfàAUifê) and likewise IIi(£)ni(£) =
£). Then difïerentiating the first order relation, one gets

which gives the first relation displayed in Proposition 2.5.
Let us turn now to the third order operator and prove the second relation in Proposition 2.5. We start by

differentiating the first relation which gives, at all regular point £,

A'" A"
— n i + — n ; = n'iAQMii! + niAQi^i i i + I
z z

We apply IIi(^) both on the left and right side of the relation, which yields

-2niAQiAQiAni + n iAQi^ni = -—ni + —
Z Z ^

In order to evaluate Q[(£), we differentiate the relation (2.37) and apply Qi(0 in order to obtain:

Thereafter, using the fact that Q^IIi + QiIIi = 0, one has that

r M Q ' ^ I I i =-IIij4IIiQii4IIi +IIij4QiIIij4IIi - X'IL1AQ'iAn1-U1AQ1AQ1AIl1,

and using ni(0n(0 = -Qi(0^nx(0 and n ^ n ^ O = -ni(0AQi(0, we obtain

Now thanks to the algebraic relations (2.18) and Lemma 2.2, we get
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as well as

Gathering all the terms together gives the second relation of Proposition 2.5 and finishes the proof. •

We go back to the computation of II. Our strategy is to evaluate the third order operator ui (£)AQi (QAQi (£)
at 0 by using Proposition 2.4 and letting £ tend to 0. Hence one has that

:2(0 + o(A)l A \Q0 + ̂ r r n 2 ( 0 + o(\)

As we develop the quantity in the right-hand side, nine terms appear, most of which tend to 0 as £ tends to
0. Indeed, the five terms that contain O(A), in the development can be crossed out since everything else is
bounded and the singularity T^FT as £ tends to 0 is controlled by either Hi(£)AH2{€) — 2A(£)IIi(£)Il2(£) or
IÏ2(^)AIIi(^) = —2A(£)Il2(£)n/

1(£), in each of these terms.
Thus, after developing, we are left with the following four terms:

o+ 'lim TLi(Ç)AQi(£)AQi(Ç)ATli(Ç) = lim <

[il
[2]

[3] [4]

As £ tends to 0, thanks to Lemma 2.3 along with the projectors properties (2.18) and the two previous relations
for the crossed products ni(£)An2(£) and ^{CjAUifë), each of the four above limit reads as

lim [1] - - I I ; lim [2] = ~2A/(0)IIi(0)II/2(0)ni(0);

lim [3] = -2A/(0)ni(0)n/a(0)ni(0) ; lim [4] = Y(0)IIi(0)^^(0)^(0).

Now that we have the limit of the third order operator, we identify it with the second relation of Proposition 2.5
at £ = 0 and obtain

__ TT __ o\//n\TT /nMr/2

which yields

i i = — ^ n i + A'(o)n1(o)n'i(o)n1(o) - 3A'(o)n1(o)n/2(o)n1(o). (2.38)
o

• We are left now with III. As for II, we use Proposition 2.4 to compute the limit as £ tends to 0 of the
operator n^OAÇftOiUIxfê).

We develop the latter operator as suggested by Proposition 2.4, which gives

o(A)] ^ i ! =iim
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The other terms in the development cancel out as £ tends to 0 either because of the présence of O (À) or because
of the projectors IIi(O) and n2(0) applied to Qo-

On the other hand, one has that ni(£)AQî(£)AIIi(£) = ni(£)n'i(£)IIi(£) and therefore identifying the two
limit as £ tends to 0 gives

^(0)^(0)^(0) = n^AQlAn^o) + n1(o)n/2(o)n1(o)

which gives

n i = - ^ ( 0 ) ^ ( 0 ) ^ 1 ( 0 ) ^ ( 0 ) + V(o)ni (o)n;2(o)ni(o) (2.39)

and finally as we sum I + II + III, (2.29) holds. The proof of (2.30) is exactly the same. •

Thanks to the previous lemmas, the uncoupled System derived earlier (2.27) read in a much simpler way, as
an obvious KdV type System:

(2.40)

A'"(o) ̂  = n2(o)B(n2(oH)öxn2(oH.
6

3. CONVERGENCE IN THE UNCOUPLED CASE

In the preceding section, we have obtained a set of necessary conditions on iiO,^i, t^ and Uz in order that
W given by (1.2) is an approximate solution of (1.1). The aim of this section is to show that one can solve
simultaneously équations (2.12), (2.40) and (2.28) and that there exists a solution to (1.1) which is indeed
asymptotic to the approximate solution thus constructed. One of the key argument will be that the correctors
ui and u% given (2.28) and (2.7) satisfy the sub-squareroot condition (1.3).

In order to be able to state our theorem, one needs to prove the following proposition regarding the existence
for large times of order O(^) of the exact solution of (1.1).

Proposition 3.1. For any s > | and for any ut=o = e2uin such that uzn G HS(M), there exists T > 0 such
that there is a unique solution u of (1.1) lying in the space C([0, ^-], Hs) n Ca([0, J-], H3~1).

Proof of Proposition 3.1. The proof relies mainly on the fact that B(u) is symmetrie and follows the existence
proof for quasilinear symmetrie Systems [1]. The only non trivial thing here that needs to be proved is that the
#5-norm of u(i) remains bounded for large time scales of order O(-^z). Let us brieüy sketch the proof: as we
multiply the équation (1.1) by d2su and integrate with respect to the space variable, one obtains that

~ ƒ \dsu\2dx = f d2suB(u)dudx,
2 dt Jm JR

As usual, we manage to estimate the right-hand side as follows

d2suB(u)dudx < c\\ufs

and we conclude by applying GronwalFs lemma, that gives

^ < HufeolL for t<c~

Jm
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Therefore our Hs-bound does not blow up for times of order O(^) and the natural local existence theorem for
(1.1) as a hyperbolic System extends itself to the interval [0, J-], which finishes the proof. •

Thanks to Proposition 3.1, let us introducé ue, for any ƒ lying in Hs with s strictly greater than | , solution of

6
dt + A{dx) + - U e - B(ue)dxu

(3-1)

defined on [0, ̂ ] for Tx > 0.
Our resuit reads as follows.

Theorem 3.1. Let s > § and ƒ € Ha (a sufficiently large) such that TLof = ƒ. Under Assumption 2.1, there
exists T\ > 0 and a unique u€{x,t) in Loc([0, ÇH,uP) solution of (3.1) as well as T^ > 0 and uoi(Xi:ti) and
^02(^2,^1) solutions of

X/f/(0)
H —

6 (3.2)

and

A"'(0)
dtlUQ2 -

0 ~ " (3.3)

both lying in L°°([0,T2], Hs).
Moreover there exists TQ > O fs.t. TQ < min(Ti,T2)J such that

- ^ M - [uQ1(x + A'(O)£, eH) + wO2(£ - A;(O)t, e2t)]

as e tends to 0.

The strategy to prove this theorem relies on three points. We start by introducing

Ue{t: x) =e2 [uoi{x + A'(0)£, e2t) + uO2(x - X'(O)t, eH)} +e3^(x} t) + àu\{x, t) + e5w3(x) t). (3.4)

Then we prove the following three points:
1. The équations for UQI , UQ2 as well as those determining u\, u\ and u\ are well posed and all these terms

exist for time scales of order O(^) and lie in L°°([0, ^-}; Hs).
2. In the expression of &/e(t, x), e3u\ -+- e4ti| + e5w| is indeed a corrector of the principal term that is

||€3uf + eAu\ + e5m|Loo([0^];H3) = O(e3).

3. We obtain an estimate of the residues Vj for j > 5 and we finish the proof by performing a standard energy
estimate on ^ - ^ -
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3.1. Properties of the approximate solution

One first has to solve the following set of équations:

% - A'(0)dx)u01 = 0

and an uncoupled System of KdV équations for the long time évolution

dtlu01 + ̂ plôSuoi
À (0)

02 ^ 0 ^ 0 2 = IIx (0)5(1602)00.^02
O

with uoi = ni(0)/ and u02 = U2(0)f,
For each component we have a global existence theorem in L°°(M,Ha(M)) (with a > 0) for ƒ in H5, since the
long time évolution is governed by a classical KdV whose Cauchy problem in Hs is well known (see [18] for
example) and the short time évolution is compatible with the long time KdV. Note that if the initial condition
is polarized by the projectors IIi(0) and 112(0), the solution remains likewise.

As UQ is uniquely determined, it is an easy task to find the remaining terms of the expansion (1.2) from the
solvability conditions that are ail satisfied in the uncoupled case. Indeed, one recalls from (2.20)-(2.21) that for

we have that
ni(°K =

if we choose to set vi equal to 0. As for the remaining component of UQ {e.g. (I — EEo)uo), it is given by (2.3).
We turn now to it|) whose components on IIo are given by (2.28). These équations for IIi(0)tt2 and Il2(0)u2

are very important in order to détermine the growth of u\ with respect to time. The more terms we put at
the right-hand side of these équations, the more it affect s the final resuit of convergence. These hyperbolic
équations for each component oîTi§u\ can be solved and thus détermine üo^!- As f°r the remaining component
(7 - no)w2, it is given by (2.5) as we already found u\.

We are left with u\ that we set as equal to (7 — ^)u\ which is given by (2.7) as we already know UQ and u2.
Moreover since all the operators involved in the description of u\, u\ and u% from u0 are bounded, one

concludes that theses terms are not only determined from UQ but lie also in L°°(IR, Ha) as u$ and T2 can be
chosen as large as we want (recall that a is large enough). The existence of T\ is clear from Proposition 3.1.

3.2. Correctors

To construct our approximate solution, we have assumed as we have set up our ansatz that the term e3tif +
óu\ + êu\ was a corrector of the leading order term, which in other words means that we control the growth
in time of u\, u\ and u\.

Let us check each term separately. For u\y since UQ is bounded in 77°" for a sufficiently large, both TLQU\ and
(7 — IIo)wi are bounded in Ha~l from the previous relations that we used to détermine u\.

Again u\ décomposes itself in two parts. The component (7 — ¥L§)U\ is bounded in Ha~2 since u\ is bounded
in Ha~1 thanks to (2.5). For üo^!, ^ne genera! results of [20] give that u\ has a sublinear growth in time. This
is not enough in our case since this gives 64w| = o(e2) on [0, J-]. We give below more précise results.

Proposition 3.2. Let f(x,t) be a sufficiently smooth function such that

T1{dt,dx)f = dxg

where T2{dt,dx)g = 0 and g e L°°{R;L2) then ƒ € L°°(M;L2).
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Proposition 3.3. Let u(x,t) be a sufficiently smooth function such that

Ti(dtidx)u = gh

where g and h are such that Ti (9 t , dx)h = 0 and T2(dt, dx)g = 0 with g,h G L°°(1R; L2) then u respects sub-square
root growth condition as defined in (1.3) that is

Proof of Proposition 3.2. Since g is transported by T<i, one can write the relation in Proposition 3.2, as

rx(ft, ft,)/(a:,*) = dxg(x - A'(O)i)

which leads to
71 (7i B \f(r t\ — / p*
J-1 Ve7*; ux)J Vx; 6 / — / y

Then,

Jo
Therefore,

= e ' A < o ) ^ ) O ) + # ( ^ ^ 2 . v ( 0 )

It follows that
IIƒII2W < 2 | |^ | | 2 .

D

Remark 3.1. The crucial point in the previous proof is the présence of the dx in the right-hand side.

Proof of Proposition 3.3. Since g and h are transported, the relation in Proposition 3.3 can be written as follows

{dt - \'(Q)dx)u - g{x - X\0)t)h(x + A'(O)t).

We perform the change of function u(xyt) — v(x + A'(0)t, t) and set X = x + A'(0)i, the équation becomes

dtv(X, t) = h{X)g(X - 2Xf(ö)t) (3.5)

and therefore

v(X,t) = vo(X) + h(X) / g(X -2X\0)s)ds.

Cauchy-Schwartz inequality gives
|v(A-,t)| < |t»o| +*1/2|/»(A-)|||^||2

which leads to

I M | 2 + \\h\\2\\9h. (3.6)
tl/2
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Introducé, as in [15], the dense subset A of L2 given by

Then let un be a séquence in A be such that un tends to u in L2 and such that for each n

(dt - \\0)dx)un(x,t) = gn(x - Xf(O)t)hn(x + A'(0)t)

and where hn and gn belonging to A tend respectively to h and g in L2. un is given by

* ) /

Since the denominator is bounded away from 0 on the support of ƒ„ and #„, it follows that

l im- -1 | un || 2 = 0. (3.7)

Then, one has that

Applying the inequality (3.6) to un — u that vérifies

dt{un -u) = {gn -

gives for n sufficiently large such that ||/n — ƒ ||2 < e and \\gn — g\\ < e, that

and now taking the limit in t as it tends to 00 gives the desired resuit thanks to (3.7). •

Proposition 3.4. The solutions ni(0)ii| and 112(0)̂ 1 to (2.28) satisfy a sub-square root growth condition (1.3)
that is

Um -^1

and likewise for

Proof We first write équations (2.28) in a simplified way. Indeed, since we have that Ti(dtjdx)UiUo = 0 and
T2{dtidx)Ii2UQ = 0, the two components of u0 read as IIi(O)uo(^ + A'(O)t) and n2(0)uo(^ — ^'(0)i) with the
variable £1 taken as a parameter. Thereafter, we simply write the first équation above with the right-hand side
being the sum of two generic terms, such as

(dt - \'(0)dx)u = dxf(x - A'(O)t) + g(x - Xf(Q)t)h(x + Y(0)t)

where ƒ, g and h are L2-bounded functions and u any fonction of x and t sufficiently smooth. We have
from Proposition 3.2 that the first term in the right-hand side gives i n i t a bounded contribution in tirne, and
from Proposition 3.3, that the second term implies that u respects a sub-squareroot growth in time. This
holds exactly the same for the second component and one has, as claimed, that U0U2 respects the growth
condition (1.3). •

Finally for u\ we deduce the same growth control in time as for u\ from the solvability condition (2.7). These
two conditions give then that ||e4ii2||2 = o(e3) and He5^!^ = o(e4) and we can state the following proposition.
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Proposition 3.5. The corrector term e3ul -f éu\ + êu\ is indeed a corrector in (34) and one has that

\\e3u\ + éu\ + c5u|||Lco([0ï ^ . H . ) = O(€3).

3.3. Estimate for the residue and end of the proof

Before proving the convergence resuit, we first estimate the residue. Since one has r3 = 0 for j = 1 to j = 4,
the residue reads as the remaining terms:

Res(£, t, h, e) = e5r5 + e6r6 + e7r7 + e8r8 -f- e
9r9 + e10ri0.

Only the first two summands of this residue play a rôle. To estimate the i7s-norm L2 of this residue, we use
the fact that u\ is Hs-bounded and that u\ and u\ are controlled in time as proved from Proposition 3.2 and
Proposition 3.3.

The first term for instance is estimated as follows, using the Sobolev embeddings where Hs -̂» L°° and
Hs-x ^ L00 for s > f. And we have

||e5r5||2 < Vie5 l —7=\\dtlul\\2 + bounded terms ) •

We have then:

Proposition 3.6. The residue can be estimated as follows in the norm L°°([0,

Remark 3.2. If u\ vérifies only a sub-linear growth condition, we would have concluded using the same argu-
ments that ||Res||2 = o(e3) which would not had been enough to establish our theorem.

As we have estimated the residue, we have that our approximate solution Ue satisfies

dtU
€ + A(dx)U

€ + - ^ - - B{U€)dxW = o(e4) (3.8)

where o(e4) is in L°°([0, £];H8) norm.
Let us turn to the final proof of our convergence resuit that can be compared to the stability results displayed

in [14,20]. We dénote by ue the exact solution of (1.1) and W both lying in C([0, J ] ; iP) , for some T > 0.
We dénote by ü the différence

Û = W - ue with ü(xy 0) = 0.

Thus the équation satisfied by ü reads as

dtü + Adxü + — - B{u)dxu + B{W)dxW = o(e4)

which can be written
Eu

dtü + Adxü + — + B{ü)dxu + B(W)üx = o(e4

Multiplying by d2sü and integrating with respect to the space variable gives

- l ) s ~ [ \dsü\ldx+ f d2süB{ü)uxax+
2 dt JK Jjg
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As in the proof of Proposition 3.1, if s is strictly greater than | , one can bound the two terms A and B,
such as

A < \\U'\\.\\ü\\2
a

B < HU|«||2
which finally gives that

±\\ù\\2
s<

and Gronwall's lemma gives with ||û||s(0) = 0

||«||? < (ece2* - l)o(e2) for t<^

and it is thus straightforward to conclude the proof of Theorem 3.1.

3.4. Higher order terms

A natural question that arises at this point is to push further the formai expansion and check if a new term
in the expansion provides a b etter précision. In the previous expansion, we have set the ansatz to be Ue as
described in (3.4). In the expression (3.4), u3 was set as equal to its component (I — HQ)US and we verified
that the corrector terms were indeed correcting the leading order term. Let us start off now with the following
ansatz that has one more term

W{t, x) = e2 [uoi(x + A'(O)t, eH) + uO2(x - A'(0)*, eH))
(3.9)

+e3'Ui(:r,£ïe
2£) + e4u2{x,t, e2i) + e6u3{x,t,eH) + eQuA{x,t, e2t).

Again, we plug this ansatz (3.9) in (1.1) and obtain the same profile équations (1.5), (1.6), (1.7) and (1.8) as in
the first section up to the order 4 (r3 = 0). At the order 5, annihilating r5 gives

dtlui + dtu3 + A{dx)us + Eu4 = B{uo)dxui + B(ui)dxu0. (3-10)

From the above équation and thanks to Lemma (2.1), we deduce the following solvability conditions

i -h
(3.11)

= idtlQoui + iQoLiUs - iQoB(uo)dxui - iQoB(ui

Now thanks to (2.5) and (2.6), we deduce the following long time évolution équation for the corrector u\y where
is not null anymore

+ H1QLIQOLIIIQU2 — noZaQo

(3.12)

Prom this équation (3.12), as earlier, we apply successively the projectors IIi(O) and Ü2(0). Then by using the
average operators, GTX and GT2Ï

 w e deduce the équation governing the corrector HQUS that appeared in this
new formai expansion. It reads

ïi(&,öx)IIi(0)u3 = -mi(0)LiQoLin2(0)u2H-F(tii,uo)
(3.13)
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where F and G are some bounded functions depending only on UQ and u±. We have proved previously that
the corrector u\ was bounded in L°°(]R, L2) and that u2 respected a sub-squareroot growth condition (1.3)
along with (/ — IIo)^- As one solves (3.13) by integrating the right-hand side term, one réalises that the two
components of Ilo^a cannot respect any more a sub-squareroot growth (1.3) but in fact verify at the most a
sublinear growth condition (5.4), which implies that the term e5IloW3 is not a corrector of the term t^u2 in
the expansion (3.9). Indeed one has that ||e4u2||2 = o(e3) and at the most ||e5?X3||2 = o(e3) for large times of
order O(^) .

It is thereafter clear that we cannot push the expansion any further as it does not provide us with terms that
improve the accuracy. Nevertheless, with some manipulations in the previous expansion, we dérive in the next
section, coupled KdV type Systems for which we obtain a better error estimate.

4. T H E C O U P L E D SYSTEM: DÉRIVATION AND CONVERGENCE

4.1. Dérivat ion of the system and s t a t ement of the result

The way we dérive the coupled system of KdV type relies on the following remark. The convergence result
in the previous section shows that the error between the approximate solution and the exact solution of (1.1)
is o(l) rather than O (e) as one could expect. This is mainly due to the fact that when we constructed tt|, the
contribution of the coupled nonlinear terms in (2.28) yields a sub-square root growth in time. In order to avoid
this fact, one can impose to conserve all the nonlinear terms in the équations satisfied by IIi(O)uo and ÏÏ2(O)?xo
in the previous analysis, which gives

- X'

Thanks to the main Lemma 2.3, the above system reduce to

dtln2(0)uo -

(4.2)

Then u\ is given by

- X''(0)^(0)AQ2
0AU2(0)d3

xu0

T2(dudx)H2(0)u2 = -
(4.3)

We have to keep in mind that Ili(0)wo and n2(0)wo have also to satisfy the équations of transport (2.12).
Obviously this last set of équations (2.12) is not compatible with (4.2).

In order to overcome this difficulty, the crucial point is to modify the ansatz (1.2): we do not consider any
more functions depending on two scales in time but only functions under the form

(4.4)
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We impose that («011^02) satisfies

dtu
e
01 - X'(0)dxu

e
0l + e2

dtu%2 + X'(0)dxu
e
02 - e2

-n^BKi+uSa^ugi = 0

= 0.
(4.5)

Again this system is not compatible with the set of transport équations (2.12) which is satisfied only at the
order O(e2)

(4.6)

Remark 4.1. If we look at the system (4.5) as non homogeneous linear system, we have that uoi and U02
remain polarized with respect to IIi(O) and n2(0) as long as they do respect this polarisation condition at t — 0.
This is easily deduced from the présence of II j (0) and n 2 (0) in front of the non linear terms.

We still define u\ by

(4.7)

H2(0)ul(x,t) = - ^ — ^

and for the remaining part (J — n o )u | we maintain the second équation in (2.3). For u\ we set

. T2(dt,dx)U2(0)u2 = -U2(0)AQo(dt
(4.8)

and again for the remaining part (/ - no)ti | , we maintain the solvability condition in (2.5). To finish our set of
conditions for our ansatz, we set n o n | = 0 and the remaining part differs from (2.7) as we have eliminated in
our ansatz the variable t\, as is

(I - - iQoB(ue
Q)dxu

e
0. (4.9)

Our resuit reads as follows:

Theorem 4.1 (Coupled System). Let s > | and ƒ in Ha (a large enough) be such that UQ/ = ƒ. Under
Assumption 2.1, there exists T\ > 0 and a unique solution ue(x,t) of (3.1) bounded in L°°([0, ^]\HS) as well
asT2>0 such a unique couple (noi(x,i),Uo2(^,O) bounded (with respect to e) in I/°°([0, ^}]HS) solution of

\'(0)dxu*Q2 -

(4.10)

u%2)dx{u%1 + u%2)

with (x,0) - IIi(O)/ and u*02(x,0) - n2(O)/. Moreover, there exists To > O (To < min(T1,T2)/) such that

ue{x,t)
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The strategy for proving this theorem is the same that for the previous one. However, the proofs are slightly
different.

4.2. Properties of the approximate solution

We have a local existence theorem for this coupled System (see [3]) that can be viewed as a dispersive
perturbation of a symmetrie hyperbolic System. The solution is defined on [0, J-] thanks to the présence of e2

in front of the nonlinear terms (as in Prop. 3.1). Therefore all the terms of the ansatz are well defined and u^
and UQ2 are bounded in L°°([0, J ] ; Hs). The crucial point is now to prove that u\, u\ and u\ are bounded.

Purthermore, as we have remarked in Remark 4.1, UQX and UQ2 remain polarized respectively to Iïi(0) and
112(0) for all times as it is the case at t = 0.

4.3. Properties of the corrector

UQ and u\ are indeed bounded as in the previous proof. For u% we improve the previous results and those
displayed in [14,15] in similar cases. We prove that u2 is bounded in time on [0, J-]. Let us recall the équations
defîning u\

(4.11)
)u2 =-U2(O)AQo(dt + Adx)C

Recall that UQX and UQ2 satisfy

i XU°l 6 (4.12)
\ (dt 4- X' (0)dx)uQ2 = O (e2).

We prove the following proposition.

Proposition 4.1. u\ is bounded independently of e in Loo([05 ^];HS).

Proof of Proposition J^.,1. We prove the resuit for the first component üi(0)w| of u\. The proof is similar for
112(0)1*,!- Let us rewrite the first équation in (4.11) in a simplified way:

where M is a TV x N matrix and UQ2 lies in L°°([0, J ] ; Hs). Then, one has

A'Wtï f e-iVf°)s«M^2(^s) ds.

We integrate by parts A, which gives

1 * rt

0 f -4
and now from (4.12), we have that 3SUQ2 = —iX'(0)ÇUQ2 + O(e2), which gives

0(1)
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for times of order O(-p), which gives that ni(0)it| is bounded in Hs on [0, J-] and since (I — r io)^ is bounded
from (2.5), we conclude the proof. D

The fact that u\ is also bounded is easily deduced from (4.9) and the fact that u\ is bounded. We therefore
have proved:

Proposition 4.2. The corrector term e^u\ -f e4u| + e 5 ^ is indeed a corrector in (4-4) and one has that

\\e*u\ + éu\ + e5u!||Loo([0i£];jff0 = O(e3).

4.4. Estimate for the residue and end of the proof

As earlier, we start by estimating the residue. It is more complicated than in the previous proof since the
conditions we have chosen on the terms of the ansatz (3.4) do not imply r\ — 0 for i = 1, 2,3,4. For the moment,
we can only write the residue as

10

Res(x, t, ti, e) =

and perform the asymptotic expansion with respect to e. Note hère that the ansatz is expressed only in the
variable t and x and therefore the values of r\ displayed at the beginning of this section do not hold anymore,
in particular, the variable t\ is not used anymore. Therefore, one has that

r\ = EUQ with ul — u%x + «02! r2 = ®tu% + A(ÔX)UQ + Eu\

re
3 = dtu\ + A{dx)u\ + Eu%\ r% = dtu% + A(dx)u\ + Eu% - B(u€

0)dxu
e
0.

From the conditions imposed on each term of the ansatz at the end of Section 1.2 for the coupled system, we
deduce, as part of the ansatz is constructed for that matter, that

_ rf = 0 since UQ = TLQUQ]
- (I — no)r2 — 0 from the second équation in (2.3);
_ riorl — 0 from the expressions of nouf in (4.7) and (/ — n o ) r | = 0 from the expression of (/ — no)^l

in (2.5);
- (/ — no)r| = 0 from the expression of (/ — IIo)u3 in (4.9).

Up to the order 5, we are a priori, only left with e2nor2 + e4nor| which reduces to, for its first component,

IIi(O)rS + e2n!(0)r | = dtu*01 - ^ ( 0 ) 0 ^ + e e2

Now from the system (4.5) verified by WQI an<i 0̂2̂  a n d the main algebraic lemma 2.3, one has that the previous
équation reduces to, using also the condition verified by u\, namely (4.8),

and from (4.12), the term e2llor2 + e4nor| is nothing else but a residue at the order 6. Then it is obvious to
deduce the following proposition since all the terms u\, u\ and us are bounded.

Proposition 4.3. We have that ||Res||Loo([0)-H];L
2) = O(e5).
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Thus our approximate solution solves (1.1) such as

277/e

dtW + A(dx)W + - ^ - B{U€)dxW = O(e5). (4.13)

Following then the argument laid out earlier, we obtain in the same manner, the following estimation on the
norm Hs of the différence ü between the exact solution and our approximate solution, that reads

| | ü | | 2 < ( e < * 9 * _ i ) O ( c 3 ) f 0 r i < J

which finishes the proof of Theorem 4.1.

5. COMPARISON BETWEEN BOTH MODELS

The two convergence theorems presented in this paper rise a few questions. As the error estimate between
the approximate solution and the exact solution is improved in the second theorem, one ought to think that
the second approximation is more accurate. It is in fact not clear as we do not exhibit a lower bound estimate
of the error between the exact solution and the approximate solution in both cases.

Nevertheless, we want in this section to establish a link between the two models that partially enlight their
comparison. Indeed, our purpose here is to show that, in large time scales, the solution of the coupled System
converges to the solution of an uncoupled pair of KdV type équations.

We rewrite both Systems (4.10) and (3.2)-(3.3) in the variable (t, x). The relevant small parameter reads as
e (we replace e2 by e in this section). This gives:

f dtu -f dxu + ed^u + edxduP(u, v) = 0 , ,

\ dtv - dxv - tdlv + edxdvP(u, v) = 0 [ }

for the coupled system and

f dtu -f dxu + edlu + edxduP(u, 0) = 0 ( ,
\ dtv - dxv - edlv + edxdvP(0, v) = 0 [ ]

for the uncoupled system, where P(u, v) is an homogeneous polynomial of degree 3.
We int end to prove in this section the following theorem:

Theorem 5.1. Let s > | . There exists Tmax > 0 (independent of e) such that there exists (u€,ve) G C([0, ^3L],
Hs) solution of (5A) and (Ue,V€) e C([0, 2W],£P) solution of (5.2) with W{x,Q) = u(x}0) and Ve(x,0) =
v(x}0). Moreover

as e —• 0 .

Proof. As it is proved in Proposition 3.1, we have a local existence theorem for (uc,ve) solution of (5.1), valid
for times of order O(Ç). We remind the reader that the proof of this proposition relies on the fact that (5.1) is
a symmetrie hyperbolic system with regards to the nonlinear terms.

The local existence for (Ue^Ve) is obvious from the global existence theorem available for the Korteweg-de
Vries équation.
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The idea to prove the convergence resuit is to seek approximate solution of the System (5.1) as an asymptotic
expansion with respect to e. This approximation reads as the following ansatz:

U e ( x , t ) = u o ( x , t , e t ) + i ( , , )
(5.3)

V € ( x t ) = v o ( x , t , c t ) + ( t t )

and we dénote by r = et. These expansions are a priori valid for times of order O(~) which is consistence with
the existence in time of the exact solution (u€,ve) of (5.1). u0 and VQ correspond to the leading order terms
in the expansion where u\ and v± are meant to be correctors. The same formai expansion as in the previous
section leads to a proof of Theorem 5.1.

We introducé as in [15,20] a sublinear growth condition that ought to be satisfied by (ui,vi) in order to be
correctors. This sublinear growth condition is weaker than the sub-squareroot condition introduced earlier (1.3)
but is enough for this proof.

Sublinear growth condition

For w sufficiently smooth

lim -\\d?xrw{x,t,T)\\2 = 0 for ail a G M3. (5.4)
t—>-oo t ' 't

Plugging our ansatz (5.3) in (5.2) gives

3

(dx + dt)W + e (dlW + dxduP(Ue, Ve)) = Yl eJrJ

(dx - dt)V
e - e (<93Ve - dxdvP(U\V€)) =

We solve simultaneously (ri = 0,Si = 0) for i = 0,1, which gives the following set of necessary équations

(dt + dx)u0 = 0 f ôTw0 + <9^i + dxu! + ö3wo + dxduP{uOi VQ) = 0
and <

(dt - dx)v0 = 0 { dTv0 + ôtui - ÔXÎ;I - ô^vo + dxdvP(u0} vQ) = 0.

For (We, Ve) to be an approximate solution of (5.2), the two above Systems constitute a set of necessary solvability
conditions.

In an analog manner as in the second section, we dénote by T+ and T_ the two transport operators
T+ (dt, 9X) = dt~dx and T_ (dt,dx) = dt + dx. We introducé the corresponding average operators GT+ and GT_
as defined in Section 2.3. We apply these operators to the long time profile équations. Note that Property (iii)
(Prop. 2.3) holds with a sublinear growth condition (5.4). Then applying GT_ for example gives

= dTuo -h d^uo

= dxduP(u0,0).

Note that P(UQ,0) gathers the only terms in P(uO}vo) that are polarized with respect to T-(dt,dx) and that
are leffc unchanged by the action of GT_ - Analog actions of GT+ on the other équation hold likewise.
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We obtain the new solvability conditions for UQ and VQ.

(ft + dx)u0 = 0 f dTu0 + d^uo + dxduP(uOi0) = 0
and <

(ft - dx)vö = 0 [ dTv0 - d*v0 + dxdvP{uo,0) = 0

and for the correctors, one has

dt + dx)ui = dxduP(u0,0) - dxdu

(5.6)

From Proposition 3.3, we easily deduce that u\ and vi verify a sublinear growth condition (5.4).
At this point uo and VQ are completely determined by the above solvability conditions and therefore lie

in C(R,HS) together with the correctors whose growth is correctly controlled. Thereafter Ue and Ve lie in
C([0, ~}\HS) as ue and ve.

Our proof of Theorem 5.1 ends with a stability result for which we ought to estimate the residue in (5.5).

The latter reads as 2 , 3 > a n d one has from the sublinear growth condition verified by u\ and v\ along

with the boundedness of UQ and VQ in C([0, Ç]; Hs) that

3 e X " / « O e ( 5 ' 7 )

It is afterwords easy as in Section 3.3 to finish the proof by estimating ||Z^e — u%s and ||Ve — ve||5 and thus
conclude. D

Remark 5.1. One must be careful if we try to interpret this result. It is indeed a decoupling result that enables
us to compare the two models but we have to keep in mind that the Hs norms \\W — ue\\s and ||Ve —^e||s are only
of order o(l) and not O (e). This means that for relatively large e (physically e — 10"1 is relevant in the water
waves context), the discrepancy between the two models can be large. For instance, in the case of interactions
of solitary waves, the interaction is definitely nonlinear and the coupled system is a better model as it is clear
in the simulations conducted in [4,6].

6. EXAMPLES

In this section, we present the dérivation of KdV coupled Systems in two physical cases. We recall that our
convergence result s do not apply in these cases.

6.1. The Euler-Poisson équations

In this section, we investigate the Euler-Poisson équations that occur in the context of ion acoustic waves.
Consider a plasma of électrons and ions, where the inertia of the électrons can be neglected unlike the electro-
static effects of the électron charges. The électrons are modelized as a gas. Expressing the Boltzmann équation
of state along with the conservation of mass, with <j> being the electrostatic potential, 77 the density of électrons
and v their velocity, one obtains the simplified dimensionless équations, namely the Euler Poisson system, that
reads as

Vt + (wu)x = 0
t + vvx = —(j)x (6.1)

4>xx = e — V-
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We refer to Dodd [13] for a detailed dérivation of (6.1).
We will apply the second section, in this particular physical context, that is starting from (6.1), we give a

dérivation of KdV type Systems as an asymptotical équation describing (6.1) for long waves and small amplitudes.
If one linearizes this System, we obtain describing the potential, the following équation in <f>

which gives the relation of dispersion w2 = k2(l + k2)~1 whose shape near 0 (long wave approximation) meets
the requirements of the preceding gênerai study as in figure 2.1. As we set up our ansatz, we dérive necessary
conditions on the approximate solution and obtain KdV Systems. The System (6.1) if obviously not of the
form (1.1). However, we will show that the second section applies in this case. We first make the following
remark.

Remark 6.1. If u€(t, x) is a solution of (1.1) then ve(t, x) — ue(et, ex) is a solution to

dtv
e + Adxv

e + Eve = B(ve)dxv
e.

Then the ansatz that has to be used for (6.2) is

(6.2)

Ue = (6.3)

in order to pursue the same analysis as in Section 2.

System (6.1) can be seen as belonging to a class of pseudo-differential Systems that generalize (6.2). We
therefore use the same ansatz.

The ansatz

We seek approximate solutions for (6.1) of the form

rf = 1 + €27]0{ex, et, eH) + e37ji + e4rj2

(j)e = e2(j)0(ex, et, e3t) + e3</>i + e 4 0 2

v
€ =

(6.4)

e4v2.

Plugging the ansatz (6.4) into (6.1), one obtains the following expansion with respect to e,

t=0

i=0
2

i =0
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Since we intend to solve this system up to the order e5, we obtain the following set of équations
• for the first équation,

for the

and for

<

second équation,

<

the last équation,

dtlvo + dxvo--

' dtlv0-\-dx<j)o

dtxvi + dx(fi

we have

( rjo ~ (f)0 =

= 0

= 0

+ dxv2 + dx(v

= 0

= 0

+ ^ + « 0 6

0

fa)
(r i

o7]o) = 0 (r2

(-0

( - 1

>xu0 = 0 (s2

= 0)

= 0)

= 0)

= 0)

= 0)

= 0)

(<?o = 0)

(6.5)

(6.6)

~ (pi = 0 = 0)

(q2 = 0).

(6.7)

Since from (6.7), 770 = </>o, both these variables solve a classical wave équation (df — d%)u = 0 and read as the
sum of two functions moving at the speed ± 1 . Let us then define the two transport operators as previously
such as Ti(dt,dx) = dtl — dx and T2{dudx) = dtl + dx and the associated average operators GTX and GT2 that
are in this context nothing else but the projectors on the kernels of respectively IIi(0) and II2(0) and that we
will dénote from now on, P1 and P2 . With these notations, we deduce that 770 and VQ read as follows

Vo = P1V0 + P2V0

and
VQ = P\VQ ~\- P2VQ

and from the wave équation in 770 and VQ, one has that Pi770 = — Pi^o and P2770 = P2^o- Hence applying both
projectors Pi and P2 on every équations will lead to the desired results. Let us point out beforehand that these
two average projectors can be applied on each terms of the équations. For 770 and VQ} it is clear since they are
transported by the scalar operators Ti and T2 and for the other terms in the expansions indexed by 2 (the ones
indexed by 1 do not play any rôle - see below -), we assume that their growth in time is controlled and is at
least sub-linear and Property (iii) of the average operators allows us to conclude. Naturally, this hypothesis
needs to be verified once we have derived necessary conditions on the corrector terms.

Now the équations satisfied by 771, v\ and ipi are the same than those satisfied by 770, VQ and cpo and are solved
in the same way. Moreover, since the unknowns 771, v\ and <pi do not appear in the équations r2 = 0, s2 — 0 and
q2 = 0, we can set them to zero.

In order to obtain the profile équations for 770, ̂ 0 and <PQ} we start by applying P2 on the équations (6.5) and
(6.6) and look at the évolution of the profile moving in the right direction

P2dxv2) = 0 (6.8)
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and

= 0. (6.9)

Now summing (6.8) and (6.9) and difïerentiate the second équation in (6.7) in order to replace dxP2<j>2 in the
équation, gives

+ P2(dtl P2(dtl + dx)r]2 = 0.

nonlinear term nonlinear coupled term dispersive term corrector term corrector term

We obtain in an analog manner the second équation governing the long time évolution of

tl - dx)v2

as we set now the corrector in the équation to be such that

Pi(dtl-dx)(V2-v2)=0

(6.10)

= 0
(6.11)

(6.12)

we obtain the following coupled KdV System as an asymptotic limit to our problem that reads for the long time
évolution, with u = P2rjo and v = Pirjo^

dt2u + -

1
t2v - -

Z

udxu - udxv = 0

3 1
- -vdxv - -udxu - dx(uv) = 0.

Z Z

(6.13)

Since we kept coupled terms, we recall from the previous gênerai discussion that (6.13) is not compatible with
the 1-dimensional wave équation solved by TJQ and v\. Therefore as for the dérivation of the coupled System laid
out earlier, we consider u and i?, back in the variable (x, t) solutions of

dtu + dxu + e -d%u + uc^ii — i4Öxv = O
L ^ J

9tu - dxv + e - - 9 ^ - -v9xu - -'uô^w - dx(uv) = 0.
L ^ z l J

(6.14)

Note that we actually obtain a whole class of limit Systems, since we can éliminât e or add nonlinear term in the
équation as long as they can be compensated by the same terms in the correctors with a contribution that must
remain bounded in order not to affect the convergence resuit. For instance we add or subtract terms of the form
vdxv in the first équation and terms of the form udxu in the second équation. Any of these terms thanks to
Proposition 3.2, implies a bounded contribution in the correctors and therefore does not affect the convergence.
We can for instance set up a combination of such terms in order to obtain a limit System with a symmetrie
nonlinearity. This opération could very well be baptized as a "symmetrisation" process. The motivation for
applying such a process is double: first of all it assures that the limit System has at least an L2 invariant, which
is physically important and secondly that the limit is well posed and has a solution that exists for large time
scales of order O(^), which is crucial in the scope of a convergence theorem.
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In this case, the "symmetrisation" process gives that we need to add vdxv in the first équation and — \udxu
in the second and modify consequently the expression for the correctors. We then obtain, for the correctors,

v2) = -udxu
(6.15)

which from proposition 3.2 remain bounded. The proposition can be applied here, thanks to Remark 6.1, as we
used the proper ansatz for which the previous gênerai theory stands and as u2 and v2 are indeed L2-bounded
since u and v lie in the proper Hs (for s > | ) . The final limit System for the Euler-Poisson problem read in its
vectorial form as

dtU+(l ? W + «(i ? W + eM(EW/ = 00 - 1 0 - 1

where U is now the vector and M(U) the symmetrie matrix

M(U) = —u v — u
v — u u — %

We do not go further into the analysis of this model as we do not intend to prove in the scope of this paper,
a convergence resuit for this example. This convergence resuit may be obtained using technics of Cordier-
Grenier [10]. We postpone this study for a further work.

6.2. Water waves

The Korteweg-de Vries équation was first derived in the context of surface water waves after Russel's obser-
vation of a soliton. From Bona-Chen's dérivation displayed in [5,6], one can dérive a large class of KdV type
Systems modeling counter-propagating water waves.

Indeed, start ing from the Euler équation for an irrotational and incompressible flow, associated to the appro-
piïate boundary conditions at the bottom and no surface tension at the surface lead to the Laplace équation in
the flow domain. Then designating by <ƒ>(#, y, t) the velocity potential where x is the horizontal variable and y
the vertical variable, rj(x,t) being the water élévation lead to the Euler équation with free boundary conditions,
that read in its classical dimensionless form as

Vt + ®</>xVx - Tj<fiy = 0

0 < y < 1 + ar)

y = 1
(6.16)

where a = a™ep*£de and (3 = ( waveien** th ) t n a t w e s uPP o s e to be the small parameters of the System, e.g.
we place ourselves in the framework of large wavelength with small amplitude. Further mor e, one assumes that
a ~ f3. We will not recall in detail their dérivation. Let us just say that it relies on an expansion of the potential
of velocity with respect to the vertical variable in order to dérive the shallow water system. Taking w as the
horizontal velocity at a certain water level 0, one obtains a class of Systems as it formulated in [6,7]

Vt
f 92 1 \

OL{WTJ)X + f3 ( — - - {Xwxxx - (1 -
/l 0 \

awwx - (3 ( - - — ) {-wxxx + (1 -
^ l J

= O(a2,f32)
(6.17)



DERIVATION OF KDV-TYPE SYSTEMS 907

Depending on the choice of (À, ji) G M2, the System above describes a class of Systems that are all equivalent to
each other and the crucial point in their dérivation holds in the System written at the first order such as

which means for these authors that a derivative with respect to i, dt can be replaced by a derivative with respect
to x, dx as long as w is replaced by 77 with no loss of précision.

Out of that large class of Systems thus defined, two of them stand out as the KdV type system and the BBM
type system

{ Vt + Wx + a(wn)x + -wxxx = 0
P

Wt + Vx + OLWWX + —T]xxx = 0
O

{ Vt + wx + a(wn)x - — i)xxt = 0
P

Wt+Vx+ OLWWX — — wxxt = 0.
6

There exists numerous discussions regarding the comparison between these two models especially for the single
KdV équation compared to the BBM équation. The most fruitful and detailed one can be found in [2], where
the authors explain how the reguiarized model fits better with regards to the various drawbacks of the KdV
équation. However, these two Systems nor any of the Systems that can be derived from the class described
above, are satisfactory from our point of view, as in all cases the nonlinearity is not symmetrie unlike in the
original system.

In this section, we propose a more satisfactory and "rigorous" dérivation of KdV Systems in the context of
water waves which gives a new class of such equivalent system including symmetrie Systems of KdV type that
do a priori hold the same approximation properties. Besides, in our dérivation, the small parameter appear
to be unique and the arguments used are no different from those used in the gênerai theory displayed in this
chapter. Let us rewrite the Euler system with free boundary conditions, with a unique small parameter e,

ecpxx + 4>yy = 0 0 < y < 1 + er]
(f>y = 0 y - 0

77t + C 0 x r 7 x _ I ^ = o 1 (6-19)
1 2

e 1 2 t y = l + er].

Before setting up our ansatz and plugging it in (6.19), let us expand <j>(x, y, t) with respect to the second variable
around y — 1 such as

0(s, V, *)ly=i+6T?= 0(z, V, *)lv=i + evdv4>(x, y, t)\y=1^-e2r}2d^<t>{x, y, t)\y=1 + O(e3). (6.20)

We set tp(x,i) = </>(x, l,i) the profile at the undisturbed water level, and from the following system,

x + i>yy = 0 0 < y <l-\- er]
= O at y = 0 (6.21)

,t) =(p(x,t)

we solve <f> in the y variable with respect to the other variables, using Fourier transforms,
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and thereafter one has that

which gives the first terms of the expansion of these quantities with respect to e,

,t) +O(e3)
(6.22)

Now plugging the expansion of <j)(x, y, t) in the last two équations of (6.19) at y = 1 + erj gives, using (6.22):

- e2r)dlip = 0(e3)

•v + h i-dl* - e2
Vdtd

2
xV> + | T Ï V = 0(e3).

(6.23)

In order to use the same ansatz as in the gênerai theory, we change e by e2 in the above system and make the
following change of unknowns fj = ^ and <p = -fs- System (6.23) gives omitting the",

(6.24)

= 0(e5)

\ Y yr?V = 0(e5).

We seek now an ansatz as follows

rj(x, t) = e2
Vo(x, t, e2t) + 63?7i(x, t, eH) + e%(x, t, e2t)

tp(x, t) = €2(fo(z, t, e21) + e V i (re, t, e2t) 4- €4(p2 (x, t, e2t).
(6.25)

We now plug (6.25) in (6.24). It gives as we identify the terms at each order of e:
- at the order O (e2)

dtr]o -f

- at the order O (e3)

+

= 0;

ip\ = 0

(6.26)

dt<pi + vi = 0;
(6.27)

- at the order O (e4

dtlVo = 0

(6.28)

= 0.
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First of ail, note that the équations satisfied by <p\ and 771 are the same as those satisfied by 770 and <po in (6.26).
Besides 771 and y>\ do not appear in the long time évolution équations (6.28). One can therefore set them to
zero with no loss of generality.

These sets of équations suggest us to consider g — dx<p as an auxiliary unknown. Then, as in the first
example, solving (6.26) gives that

(rjo(x,t) =rjol(x-t) +7702(2; + *)
\go(x,t) = goi(x -t) + gO2(x + t)

and naturally from the wave équation (6.26), one has that, 7701 = £01 and 7702 = —902- Thereafter, if we set
u = 7701 and v = 7702, and rewrite the System (6.28) as follows, one obtains,

1
dtlr]o + dtr]2 + dx(gO7]o) + dxg2 + - 9 ^ 0 = O,

'ti 9o + dtg2 + <9X?72 + godxgo = 0.

Now summing and subtracting the above équations gives the following system,

2dtlu + -d%(u - v) + 3uöxw - vöxt; - dx(uv) + (3* + <9x)r72 + (3* + dx)g2 = 0,

-9^(ti - v) + u9xn - 3^öx7j + dx(uv) + (9t ~ 0̂ )771 - (9t - dx)gx = 0.

(6.29)

(6.30)

We know from the previous gênerai theory described in the previous sections, that we need to get rid of the
corrector terms along with terms whose contributions in the corrector terms will keep them bounded. In that
case and only in that case, we do not affect the convergence resuit. For that matter, we set the corrector terms
to be such that the nonlinearity in the final System is symmetrie. One needs afterwards to verify, that the
corrector terms remain bounded. This gives, as a necessary condition, that

(6.31)

g2) = -\dlv -

T2(dt,dx)(m-g2) = ̂

added term

2udxu

added term

and the final System read then as a KdV type System whose nonlinearity dérives from a gradient. Indeed one
has

(6.32)

with V(iA, v) = ̂ — ^- + ^2^ ~~ ̂ V̂ - The crucial point now is to verify that our correctors are indeed bounded
from (6.31), which is a straightforward task as it is already established in Proposition 3.2, that holds since u
and v lie in Hs (for 5 > i) .
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As for the Euler-Poisson example earlier and as for the coupled KdV System derived in the gênerai case, the
above System (6.32) is not compatible with the wave équation verified by Ï]Q and go. Then, as usual? we corne
back to the (x^t) variable, and consider our approximate (ue^ve) solution to solve

(6.33)

along with the condition (6.31) on the correctors.
Finally we hâve at hand asymptotic Systems of KdV type with a non linearity deriving from a gradient that

compete as models for the propagation of counter-propagating hydrodynamic surface waves, exactly at the same
level of approximation as those displayed in the literature. For comparison purposes, let us rewrite the System
with the physical unknowns TJQ and go being respectively the water élévation and the horizontal velocity. This
gives

+ dxg0 + fô^o + fôxfaûflo) = 0
(6.34)

g = 0.

Again our intention, is not in the scope of this paper to prove a convergence theorem as it is anyhow a difficult
task. The purpose of this example was only meant to convince the reader of the relevance of such models in the
context of water waves and show as well how the methods deriving from geometrical optics provides a rather
rigorous framework for our problem.
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