@article{M2AN_2000__34_5_1003_0, author = {Dahlke, Stephan and Hochmuth, Reinhard and Urban, Karsten}, title = {Adaptive wavelet methods for saddle point problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1003--1022}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {5}, year = {2000}, mrnumber = {1837765}, zbl = {0965.65074}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/} }
TY - JOUR AU - Dahlke, Stephan AU - Hochmuth, Reinhard AU - Urban, Karsten TI - Adaptive wavelet methods for saddle point problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1003 EP - 1022 VL - 34 IS - 5 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/ LA - en ID - M2AN_2000__34_5_1003_0 ER -
%0 Journal Article %A Dahlke, Stephan %A Hochmuth, Reinhard %A Urban, Karsten %T Adaptive wavelet methods for saddle point problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 1003-1022 %V 34 %N 5 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/ %G en %F M2AN_2000__34_5_1003_0
Dahlke, Stephan; Hochmuth, Reinhard; Urban, Karsten. Adaptive wavelet methods for saddle point problems. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 5, pp. 1003-1022. http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/
[1] Lineare Funktionalanalysis (in german). Springer-Verlag, Berlin (1985). | Zbl
,[2] Studies in Nonlinear Programming Stanford University Press, Stanford, CA (1958). | MR | Zbl
, and ,[3] A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8 (1995) 1-6. | MR | Zbl
,[4] Espaces vitesses-pression d'ondelettes adaptives satisfaisant la condition Inf-Sup. C. R. Acad. Sci. Paris, Sér. Math. 323 (1996). | MR | Zbl
and ,[5] Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997). | MR | Zbl
,[6] Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072-1092. | MR | Zbl
, and ,[7] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[8] Wavelet methods in Numerical Analysis, in: Handbook of Numerical Analysis, North Holland, Amsterdam (to appear). | MR | Zbl
,[9] Adaptive wavelet schemes for elliptic operator equations - Convergence rates, RWTH Aachen, IGPM Preprint 165, 1998 Math. Comput. (to appear).
, and ,[10] Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. | MR | Zbl
, , and ,[11] Adaptive wavelet methods for saddle point problems, Preprint 1126, Istituto di Analisi Numerica del C. N. R. (1999).
, and ,[12] Convergent Adaptive Wavelet Methods for the Stokes Problem, in: Multigrid Methods VI, E. Dick, K. Riemslagh, J. Vierendeels Eds., Springer-Verlag (2000). | MR | Zbl
, and ,[13] Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. | MR | Zbl
,[14] Wavelet and multiscale methods for operator equations. Acta Numerica 6 (1997) 55-228. | MR | Zbl
,[15] Wavelet methods for PDEs - Some recent developments, RWTH Aachen, IGPM Preprint 183 (1999). | MR | Zbl
,[16] A Wavelet-Galerkin method for the Stokes problem. Computing 56 (1996) 259-302. | MR | Zbl
, and ,[17] Inexact and preconditioned Uzawa algorithme for saddle point problems. SIAM J. Numer. Anal.31 (1994) 1645-1661. | MR | Zbl
and ,[18] Old and new Finite Elements for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-364. | MR | Zbl
,[19] Stable multiscale discretizations for saddle point problems and preconditioning. Numer. Funct. Anal. and Optimiz. 19 (1998) 789-806. | MR | Zbl
,[20] Analyses multi-résolutions non orthogonales, Commutation entre Projecteurs et Dérivation et Ondelettes Vecteurs à divergence nulle. Rev. Mat. Iberoam. 8 (1992) 221-236. | MR | Zbl
,[21] Wavelet discretizations of the Stokes problem in velocity-pressure variables, Preprint, Univ. P. et M. Curie, Paris (1998).
,[22] On divergence-free wavelets. Adv. Comput. Math. 4 (1995) 51-82. | MR | Zbl
,[23] Wavelet bases in H(div) and H(curl), Preprint 1106, Istituto di Analisi Numerica del C. N. R., 1998 Math Comput (to appear) | MR | Zbl
,