Adaptive wavelet methods for saddle point problems
ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 5, pp. 1003-1022.
@article{M2AN_2000__34_5_1003_0,
     author = {Dahlke, Stephan and Hochmuth, Reinhard and Urban, Karsten},
     title = {Adaptive wavelet methods for saddle point problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1003--1022},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1837765},
     zbl = {0965.65074},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/}
}
TY  - JOUR
AU  - Dahlke, Stephan
AU  - Hochmuth, Reinhard
AU  - Urban, Karsten
TI  - Adaptive wavelet methods for saddle point problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 1003
EP  - 1022
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/
LA  - en
ID  - M2AN_2000__34_5_1003_0
ER  - 
%0 Journal Article
%A Dahlke, Stephan
%A Hochmuth, Reinhard
%A Urban, Karsten
%T Adaptive wavelet methods for saddle point problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 1003-1022
%V 34
%N 5
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/
%G en
%F M2AN_2000__34_5_1003_0
Dahlke, Stephan; Hochmuth, Reinhard; Urban, Karsten. Adaptive wavelet methods for saddle point problems. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 5, pp. 1003-1022. http://archive.numdam.org/item/M2AN_2000__34_5_1003_0/

[1] H.W. Alt, Lineare Funktionalanalysis (in german). Springer-Verlag, Berlin (1985). | Zbl

[2] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming Stanford University Press, Stanford, CA (1958). | MR | Zbl

[3] S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8 (1995) 1-6. | MR | Zbl

[4] S. Bertoluzza and R. Masson, Espaces vitesses-pression d'ondelettes adaptives satisfaisant la condition Inf-Sup. C. R. Acad. Sci. Paris, Sér. Math. 323 (1996). | MR | Zbl

[5] D. Braess, Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997). | MR | Zbl

[6] J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072-1092. | MR | Zbl

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl

[8] A. Cohen, Wavelet methods in Numerical Analysis, in: Handbook of Numerical Analysis, North Holland, Amsterdam (to appear). | MR | Zbl

[9] A. Cohen, W. Dahmen and R. Devore, Adaptive wavelet schemes for elliptic operator equations - Convergence rates, RWTH Aachen, IGPM Preprint 165, 1998 Math. Comput. (to appear).

[10] S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. | MR | Zbl

[11] S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, Preprint 1126, Istituto di Analisi Numerica del C. N. R. (1999).

[12] S. Dahlke, R. Hochmuth and K. Urban, Convergent Adaptive Wavelet Methods for the Stokes Problem, in: Multigrid Methods VI, E. Dick, K. Riemslagh, J. Vierendeels Eds., Springer-Verlag (2000). | MR | Zbl

[13] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. | MR | Zbl

[14] W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numerica 6 (1997) 55-228. | MR | Zbl

[15] W. Dahmen, Wavelet methods for PDEs - Some recent developments, RWTH Aachen, IGPM Preprint 183 (1999). | MR | Zbl

[16] W. Dahmen, A. Kunoth and K. Urban, A Wavelet-Galerkin method for the Stokes problem. Computing 56 (1996) 259-302. | MR | Zbl

[17] H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithme for saddle point problems. SIAM J. Numer. Anal.31 (1994) 1645-1661. | MR | Zbl

[18] M. Fortin, Old and new Finite Elements for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-364. | MR | Zbl

[19] R. Hochmuth, Stable multiscale discretizations for saddle point problems and preconditioning. Numer. Funct. Anal. and Optimiz. 19 (1998) 789-806. | MR | Zbl

[20] P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre Projecteurs et Dérivation et Ondelettes Vecteurs à divergence nulle. Rev. Mat. Iberoam. 8 (1992) 221-236. | MR | Zbl

[21] R. Masson, Wavelet discretizations of the Stokes problem in velocity-pressure variables, Preprint, Univ. P. et M. Curie, Paris (1998).

[22] K. Urban, On divergence-free wavelets. Adv. Comput. Math. 4 (1995) 51-82. | MR | Zbl

[23] K. Urban, Wavelet bases in H(div) and H(curl), Preprint 1106, Istituto di Analisi Numerica del C. N. R., 1998 Math Comput (to appear) | MR | Zbl