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DUAL COMBINED FINITE ELEMENT METHODS FOR NON-NEWTONIAN
FLOW (II) PARAMETER-DEPENDENT PROBLEM

PINGBING MING! AND ZHONG-CI SHI!

Abstract. This 1s the second part of the paper for a Non-Newtoman flow Dual combined Fiite
Element Methods are used to mvestigate the hittle parameter dependent problem arising 1n a nonliner
three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general
law including the Carreau’s law and the Power law Certain parameter independent error bounds are
obtained which solved the problem proposed by Baranger in [4] in a unifying way We also give some
stable finite element spaces by exemplifying the abstract B B inequality The continuous approximation
for the extra stress 1s achieved as a by-product of the new method

Mathematics Subject Classification. 65N30

Recewved January 15, 1999

1 INTRODUCTION

In this section, we will give a brief description of a White Metzner model type for the viscoelastic low We
refer to [9] for more details

Let © be a bounded convex polygon i R™(n = 2,3) with the Lipschitz boundary ' R™ 1s equipped with
Cartesian coordinates z,,¢ = 1, ,n For a function u, g—; 18 written as u ,, the Einstein convention for a
summation 1s used

For a scalar function p, the gradient of p 1s a vector Vp, (Vp), = p., If ¢ 1s another scalar function, we denote
(p,q) = Jopq For a vector function u, the gradient of w 1s a tensor Vu, (Vu),; = u, ,,divu = u, ,,u V = u, 0’27
For a tensor function o,dive 1s a vector function, (dive), = 04, ,,0 T = 0,,7,,,|0> = ¢ o, and
(o,7)=[qo0 T

To describe the flow, we use the pressure p (scalar), the velocity vector u and the total stress tensor o5 Vu
is the velocity gradient tensor, d(u) = 2(Vu + Vu”) 1s the 1ate of strain tensor, and di(u) = 1d,, (u)d,, (u) 13
the second mmvanant of d(u)

A White-Metzner type model 1s described by the constitutive equations

Ot = o+on—pl, I=4,, (11)
oy = 2pd(u), -(12)
o = 2n(du(u))d(u), (13)
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where p is the Newtonian part of the viscosity, 7 - the viscosity function for the viscoelastic part. The velocity
u must satisfy the incompressible condition

divu = 0. (1.4)

In this paper we consider the stationary creeping flow [16]. The fluid is submitted to a density of forces f, then
the momentum equation is written as

—divei: = f. (1.5)

Two classical laws for 7 are the Power law and Carreau’s law.

e Power law: n,(z) = %gszl, r>1, ¢g>0.

e Carreau’s law: 1.(2) = (o — 700 ) (1 + /\z)r_f‘, 0 <Moo < Mo,7 > 1.

, n(n+1) ,

Some Sobolev spaces [1] areneeded. T'= [L" (Q)] * ={7=(74y)|Tij =75, T, € L7 (Q), i,j=1,--- ,n}
’ 1 /

with the norm ||[7llz = (f,|7[")"". () denotes the inner product of X = [Wy"(Q)]",M = L (Q) = {q €
L7 (Q) | foqa=0}. X, M are equipped with the norm ||v]|x = ([, |[d@)|")*, llallx = (Jq lgI”' )™ respectively.
It is easy to see || - ||a is an equivalent norm over X. We also denote 7", X’ the dual space of T and X
respectively, and (,) denotes the dual multiple between X and X’. For 1 < r < 2, we must modify the
definition of X and define X; = X N [H}(2)]™, but for simplicity we still denote it as X.

Lemma 1.1. There ezists an operator A : T — T' such that A(co) = d(u).

The proof of this lemma only needs a simple manipulation, we omit it.

Some works have been done in the finite element approximation of the Problem 1.1. In [4], Baranger et al.
gave the first approximation of the three-field Stokes flow of White-Metzner model. However, the abstract error
bounds they obtained are p-dependent, i.e., the error bounds will be deteriorated as the Newtonian viscosity
approaches zero. Furthermore, no concrete finite element space pair is available. In fact, the well-posedness of
their variational formulation needs two B-B inequalities, one for (o, ) and the other for (u, p). The construction
of finite element space pair satisfying these two B-B inequalities simultaneously is not a trivial thing at all, even
in the linear case (see [20]), since these two B-B inequalities are interplaying. The relevant two-field problem
has been studied in [21], but the abstract error bounds are also p-dependent, and still there is no concrete finite
element space pair presented. Meanwhile, the continuous approximation for the extra stress is widely used in
engineer literatures, however, a fairly large finite element space is needed to achieve this goal [13,23] that would
cause an extra cost and accuracy-losing. Recently, the so-called EVSS and its variants [12] are proposed to
attack this problem, but it needs an extra variable that would increase the cost, and even seriously that would
lead to unsymmetric algebraic equations.

In the following, dual combined finite element method [3,18,25] is proposed to solve the above problems.

To introduce the dual combined mixed formulation, we present some operators:

B:X - X', B(u) = 2n(du(w))d(u).
H,:TxXxM — T xX xM,
I'TxXxM — T xX xM.

For x = (o, u,p), y = (7,v,q), we define

(Ho(z),y) = alA(g),7) - a(r,d(u)) + a(o,d(u)) + (1 — a)(B(u),d(v))
+2u(d(u), d(v)) — (p,divv) + (g,divu), where a € [0, 1],

and (1, y) = (f,v).
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Problem 1.1. Find x € T x X x M such that
(Ho(z),y) = (Ly) Vy € T x X x M, Va € [0,1].

This problem can be cast into the following saddle point problem.

Problem 1.2. Find z € T x X x M such that

a(A(e),7) —o(r,d(u)) =0 VreT, (1.6)
a(o,d(v)) + (1 — a)(B(u), d(v)) + 2u(d(u),d(v)) — (p,divv) = (f,v) Vv e X, (1.7)
(divu,q) =0, Vg € M, (1.8)

for some a € [0, 1].

When «a equal to 1 or 0, Problem 1.2 will degenerate to problems which have been discussed in [4] and [5],
respectively. The case « € (0, 1) is more interesting, we discuss it from now on.

An outline of this paper follows. Some basic inequalities and preliminaries are introduced in §2. In §3, dual
combined FEM is proposed to deal with the non-Newtonian flow with Newtonian viscosity. The error bounds
for all variables are given under some abstract assumptions. In the last section, we exemplify the abstract
assumptions. Error estimates with respect to a strong norm are derived, and some stable finite element spaces
are presented and justified.

Throughout this paper C, C; denote generic constants independent of p. In addition, C(as,... ,an) denotes
a constant depending on the non-negative parameter a,(1 < ¢ < m) such that C(a1, -+ ,am) < C.

2. SOME INEQUALITIES AND PRELIMINARIES

We use the following notations: M, is the set of n x n real matrices. (-,-)denotes the inner product on M,,
n
ie,for X,Y € M,,,(X,Y)= 3 Xi;Yi, |X|=(X,X)?. 0=0ifn=1n,, §=1ifn=n..

1,7=1

Lemma 2.1. [5] Let K(|X|) = (6 + |X|)= and r € (1,00). Then for all X,Y € Myn(n > 1) and 6 > 0,
we have

IK(IXDX = K(YDY] < X = Y'7%0 + | X| + [y |)r =2, (2.1)

(K(XNX - K(Y)Y,X =Y) >C|X =Y [0+ |X]|+|Y]) " (2.2)
Lemma 2.2. [5] For all r € (1,00),a,01,02 >0, and € € (0,1), we have
(0+a+01) 20100 <e(@+a+ Ul)r’2of + Y0+ a+ 02)" 209, (2.3)

where v = max(1,r — 1) and 8 is defined below.

We adopt the abstract quasi-norm introduced in [5], which is very useful for error estimates. Let
(o,u) € T x X be the solution of Problem 1.1, then for (7,v) € T x X, we define the following quasi-norms:

it = [ RO+l + ) = max(a,r),
0

|d(v)|7 /Q |d@)I*(8 + |d(w)| + |d(w))" 2, p = max(2,7).
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Lemma 2.3. [5] Define

2, ifr =2,
y=7(rs) = 2D ifr£2, 542,
00, ifr#2,8=2.

Then
1. For1<r<s<2, andu,w € [WHY(Q)|", we have

[wi? o < C(8 + |ulr,y + |w)h4)* 7" |d(w)|2. (2.4)
2. Forre€ (1,2], k € [r,r + (2—7)0], and w € [W1*(2)]", we have
ld(w)|7 < Clld(w)||Ex < lwli . (2.5)
3. Forr € [2,00),k € [r+ (2 —7)0,7] and w € [Wy" (Q)]", we have
lwli . < Clld(w)||z~ < |d(w)l;- (2.6)
4. Forr € [2,00),2<s<r < oo and u,w € [WHY(Q)]", we have
ld(w)I7 < C(8 + |ul1y + [w]1y) 2wl . 2.7)

Lemma 2.4. [5] ||, and |- | are quasi-norms over X, T, respectively.

Though the explicit formula for A(o) is not available when n = 7., we are still able to prove the monotony
and continuity properties of A(e) in this case.

Theorem 2.1. There exists a constant C independent of o, T such that for any § >0

(A(o) — A(r),0 —7) > Clo~7*PA+]o|+|r)" >, (2.8)
|A(e) — A(T)] < Clo— 7" %1+ o] +|7])" 2+ (2.9)

Proof. Note

(A(o) = A(T), 0 —T) = (d(u) — d(®), (1 + |d(u)[?) T d(u) — (1 + |d(v)[*) T d(v)).

Therefore, we only need to check the following two facts.
r—2
Ifz,yc R, ¢(z)=(1+|z]’)7 z=a,6(y) = B,z = ¥(a),y = %(B), then

W(a) —¥(B),a — B) > Cla — B (1 +|af +|8))" 72+, (2.10)

() —¢(B)] < Cla— B 41+ |af + |B])" 2. (2.11)

We firstly prove that (2.10) holds for 6 = 0.
Define an operator i : R® — R™"*! i(z) = (,0),v € R""! v; = §; nr1. Then

a=¢x)=(1+z) Tz =|v+i@) 22,y =|v+ily) 2y
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We also have

u(e) = v +2(z)""*1(), uB) = v + 1Y) *u(y),
u&) = v +u@)"? (v +a(x), 1UB) = |v 42y (v +(y))

(Y(a) = P(B), o = B) = (¢(x) — ¢(y), = — y)
= (lv + @) (v + o(2)) — v+ 21(Y)[" 2 (v + o(y)), o(®) — ()
= (Jv + (@) (v +o(x)) — v+ 220 +2(y)), (v + (@) — (v +(y)))
= (&) —uB), &) "*(&) — (B 2u(B))

> Clu(&) — UB)P (&) + (BN 2

Note
(&) = 1B)* = (@) —2(B)* + ] |v +2(@)"7% = |v + 1) > o) — «(B).
Furthermore, we have |1(&)]? = [2(a)|? + |v + ()2 % = |1(@)]? + |2(&)]*2"".
Therefore, we need to show that there exists a constant C such that
(@1 + 1)) = (1+ @)l + k(B 2. (212)

If ' € [2,00), 1e. r € (1,2), we only need to prove

(&) + (B > C(1L + [u(@)] + [+(B)])

To do this, we show [¢:(&)| > C(1 + |o(e)]) and [2(B)| > C(1 + |2(B)|) These two mequalities can be cast into
the following basic inequality:

L+ [2P)F > 00+ (1 +2f) T le). (213)
Define a function f(t) = %&)——(t > 0), we show that f(¢) has a positive lower bound. In fact, f(¢) is a
1+(14¢2) 2

continuous function over interval (0,00), and f(0) = 1, limy_o f(t) =1 Furthermore, f(t) > 0 for ¢t € (0, c0),
hence f(t) must have a positive lower bound Consequently, we have proved (2 13) for the case 7’ € [2,00).
Similarly, we can prove it for the case ' € (1,2). Hence (2.12) holds for all » € (1, 00), therefore

(A(e) — A(T),0 — ) Clo — (L +o|+|7|)" 2

>
> Clo— 71+ o]+ |7)" >,
which is the first inequality (2.8) of the theorem.
Now it remains to show the continuity property of the operator A. We have
(A(o) = A(7),0 —7) = (d(u)—d(v), B(u) — B(v))
Cld(u — v)[*(1 + |d(w)| + |d(v)))" >
ClA(e) — A(T)]2(1 + |A(e)| + |A(T)I)" 2.

Y

Using Cauchy inequality yields

|A() — A(T)| < Clo — 7|1+ |A(o)] + [A(T))* "
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On the other hand, we can prove that
(1+A@)] + AP < C(L+ o] + |77 2 (2.19)
In fact, since A(o) = d(u), (2.14) is equivalent to the following:
(1+ |d(w)| + |d()])*™" < C(1 + [B(w)] + |B(v)))" 2. (2.15)
As before, we only need to show
(1 |+ yl)* ™ < OO+ (1 + [?) = Je] + (1 + [y) = )2, (2.16)
which is just a direct consequence of the following inequality:
(14 J2])*" < (1+ (1 +[al?) = fa])
i.€.

L+~ < 141+ [e?)T |2l re 1,2, (2.17)
A+lz)™! > 1+ 1+ |z |z|, r € [2, 0). (2.18)

Let t = ||, we define
Gt)=1+1+)Tt—(1+t)""} t>0.

Then if r € (1.2],

r—4

G't) = A+)7T QA+ -D)t) - (r-1)(1+¢t)2
> 1+ T (r—14 (-3 — (r— 1)1+t 2
> (r—1)((14+)7 —(1+8)72)
> 0.

Hence G(t) > G(0) for r € (1, 2], which means (2.17) holds. Similarly, (2.18) holds. Consequently, (2.14) and
then (2.15), (2.16) hold.
Combining (2.15) and (2.16), we have

|A(a) — A(T)| Clo — 7|1 +|o| +|7))" 2

Clo — 7|31 + |o| + |7))" 2+,

IN A

which completes the proof. a
Corollary 2.1. (1 +|A(e)])>™" < (1 + |o|)” 2.

Corollary 2.2. There exists a constants C such that

(A(o),0) > C’/S')|0'|2(1 +lo) -2
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Using previous results we can prove the existence and uniqueness of solutions of Problem 1.1. Setting V =
{v € X | dive = 0} and dropping the terms concerning the pressure, we introduce the following operator:
H:: TxV->TxV,

(Hy(o,u), (7,0)) = a(A(0), 7) — a(7,d(u)) + a(o, d(v)) + (1 — ) (B(u), d(v)) + 2u(d(u),d(v)).  (2.19)

We consider the following two-field problem:
Problem 2.1. Find (o, u) € T x V such that

(HX(o,u), (T ,v))=(f,v) V(r,v) e T x V. (2.20)

Lemma 2.5. H} 1s an hems-continuous, monotone and strong coercive operator.

Lemma 2.5 can easily be derived from Theorem 2.1 and Lemma 2.1.
From Lemma 2.5 it follows the existence and uniqueness of the Problem 2.1.

Lemma 2.6. [2] There exists B > 0 such that

inf sup 9V
qEM yex ||U||X|IQ||M

> pB.

Theorem 2.2. Problem 1.1 has a unique solution (o,u,p) € T x V x M which admats the follounng estimate

lollr + llullx + [plla < Cloy 7, [ £ll-1.m). (2.21)

Remark 2.1. All the estimates are p-independent. Furthermore, we will obtain similar estimates for the finite
element solution (o, un,pr) in the next section.

3. FINITE ELEMENT APPROXIMATION

We assume that the triangulation C, is a regular partition of Q [8], the quasi-uniformity of Cj, is not necessary
unless we state it clearly. Let Th, X, and M}, be the finite element space: T, C T, Xy C X, My, C M. We
denote Vi = {vh € Xp | (diV’Uh,qh) =0 Vq, € Mh}.

The corresponding finite element approximation for Problem 1.1 is:

Problem 3.1. Find (o4, un,pr) € Th x Xp, X My, such that

a(A(on), 7)) —a(r,d(un)) =0 VT € Th, (3.1)
a(on,d(v)) + (1 — a)(B(uw),d(w)) + 2u(d(uy), d(v)) — (pn,dive) = (f,v) Vv € X, (3.2)
(divup,q) = 0 Vg € M. (3.3)

Problem 3.1 can be reformulated as follows: Find (o, ur) € Th X Vi, such that
(Hy(oh, un), (Thyvn)) = (fyvn) Y(Th,vn) € Th X V. (3.4)

Assumption © (B-B inequality):

. (le 'Uh:(Ih)
3 By(r) >0, inf sup ———% > B(r).
An(r) anEM), uhegh lonll x lgnll a An(r)

Assumption A for any v > g > 1 it holds:

A

lwalli, < CrA™E 7@ |whlly,, Vs € Xa,

Cih* =D rhllon Vrn € T

IA

I llo,w
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Lemma 3.1. [21, Rem. 2.1]
Jnf flu—olx < (1+C) inf fu-wlx. (3.5)

Remark 3.1. Note that the B-B inequality for (o, u) and (op,un) 18 no longer needed either for Problem 1.1
or for Problem 3.1. An enhanced K-ellipticity is introduced in a natural, reasonable and unifying way. It is
known that there are many finite element space pairs satisfying the B-B inequality either for (o, u) or for (u, p),
but few of them satisfy the two B-B inequalities simultaneously [20].

Theorem 3.1. If Assumption © holds, then Problem 8.1 admats a unique solution (op, wp,pn) € Th XV X My,
and the following a-priori estvmate holds

lonllr + lunllx + liprllv < Cloyr, Br(r), I £l -1,m)- (3.6)
We define k as that in Lemma 2.3, and ' the conjugate exponent of .
Theorem 3.2. If (o,u,p) and (oh, un,pr) are solutrons of Problem 1 1 and Problem 3.1, respectwely, then for
all r € (1,2],

oo — onlf, + (1 - a)ld(uw —un)+ plu—unly < Cla)  inf (o =7l + |d(u - o)
’ (1,0,Q) €T L XV ) X Mp,

+ (0 + lullx + lunllx)* "o — Tl%
+ [ld(w — v)[[5x + plu — vl o + [Ip — gllmllw — vlx
+ (0 + Nlullx + llunllx)* "l — all3n), (3.7)

and for r € [2,00),

alo —onll + (1 - a)ld(u — un)[7 + plu — unli, < Cla) (lo = 7I7 + ld(u — v)[;

inf
(T,v,q)EThXVhXMh
+llo = 7le + @ +lolr +llonlr)” " llu - vk

+ pld(w — )35 + lp — gllmllu —v|x + llp — qll )
(3.8)

If the Assumption © holds, then for r € (1,2],

U5

P = pll e < Cl(1 + Bu(r)™) inf |p—q
qEMy,

e+ ﬁh(r)_l(a|a —onls
2
NI

+]d(w — up)|F + pCrh™E "R — upl2)], (3.9)

and for2 < s <,

“p - ph”L-“’ < C[(l + /Bh(r)_l) qiEIII\fIh “p - (J”LS' + ﬁh(r)-—l((g + ”o-”‘y(r’,s’) + ”o'h”'y(r’,s’))_TT |0' - Uhl?"’
+ (0 + [u'l,'y(r,s) + Iuhil,'y(r,s))r_;_ ld(u - uh)|g + CI“"u - uh|1,2)]- (310)
Here ~v(r,s) and ¥(r',s') are defined as that in Lemma 2.8.

Proof. For xp = (oh,ur) € Th X Vi, we have

(Hy(xr), ypn) = (L, yp) Yyp € Th X V.
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Let = ((o, u),p) be the solution of Problem 1.1, then

(Hi(z),y,) = (Lyy) + (p,divoy) Yy, = (T,0) € T X Vi,

(Ha(z) - Hy(zn),w —mn) = (Hy(z) — Hy(zn),® — yp) + (Hi(®) — Hy(2h), yn — Zh)
= (Hi(z) — Hy(zn), T — yp) + (p — qn, div(vs — un)). (3.11)

Set 6 =0 —T,04=u—v,p=p—q, we have

(Hy(x) — Hi(zh), ® — yp) = a(A(o) — A(on),6) + (1 — a)(B(w) — B(us), d(@)
—a(,d(u —up)) + alo — op,d()) + 2u(d(@), d(u — up))
=+ ---+1Is.

Let Is = (p,div(vp — up)). Now we estimate the terms Iy, - -- , Is one by one.
Using Lemma. 2.2, we can estimate I; and I3 as follows

|1
12|

Calelo — onlf, + 77|60,

<
< CO(1— o)(eld(w — wp)lf + 77 |d(@)[2).

In light of Lemma 2.3, Is can be bounded as

Ll < allu—usllx[éllr

< Calf + lullx + llunllx) = d(w — wn)l |6

< Coeld(u —un)f2 + C=(0 + llullx + lunllx)* " &1 vr € (1,2),
Ll < alldw — up)llel|& ] Lo

< Cald(u —un)|F 6] o

< Coleld(u —up)|l + Ce =" ||&]|%.) Vr € [2,00).

Following the same line, we estimate I, and I5 as

Il < Ca(elo —onll +e % ||d(@)|5.) Vr € (1,2],
Is] < Cofelo —onl2 + is(e +lolr + llonllr)?> " |al%k) vr € [2,00),

1Is] < plu—unfiplihe < eplu—unl?, + Cle)plal? .
Note Ig = —(p, div i) + (p,div(u — up)), then

ol < C(lIpllallallx +eld(uw —un)l? + e (lullx + llualx)* " I5l3,) ¥r € (1,2),
6] < C(Ipllmlla] x +eld(w —un)ly + Ce* " ||pl|5.) Vr € [2,00).

From Lemma 2.1, the left hand side of (3.11) has a lower bound:
(H () ~ H(n), @ —2n) > Clolo — onl?s + (1= 0)ld(u —wn)lf + plu — wnli z).

Noting the definition of &, a careful choice of ¢ gives (3.7) and (3.8).
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By Assumption ©, for v € (1,00), we have

(div vn, pr — qn)

Br(W)llpn — gnllpr £ sup

vp€Xy, ”vh”LV
= sup (H;(m) - H;(mh)7 yh) + (le Vh,P — Qh)
vhEXn lvalliy
= sup ———/[a(g — o, d(vs)) + (1 — a)(B(u) — B(us),d(vn))
vhEX ) ”'UhHI,V
+ 2u(d(u — up), d(vp)) + (div v, p — gn)]. (3.12)
Denote terms on the right hand side of (3.12) by J1, -, Js, and let v be k and s for the case 1 < r < 2 and

2 < r < 00, respectively.
Then for r € (1, 2], we have

7

|71 < Cale — onl [[vallx.

Ifre[2,00)

2-r!
|Jll < CO&(& + I|U||'7(r’,s’) + |lah”'~/(7",s’)) 2 ]G - Uhlr'””h”l,s-

As to Ja, for the case r € (1,2]

1

2] < C(1 — &) [[wnr.x ( 1t = unl¥ 0+ G + td(uh>|><r—2>"’) ” (3.13)
K —2

< (- a)funln ( /Q (o — 2m) (6 + dl(as)| -+ [l Cun) Y2t — um) (3.14)

x (9 + |d(w)| + |d(uh)1)(’“2)("'_1)> 7 (3.15)

< O(1 — ) l[vnllunld(u — un)F (3.16)

where we have used the following inequality:
|d(u — ) ¥ 72(8 + |d(w)] + |d(us))) T DE D < (0 + |d(u)] + |[dluy)|)" 2HODE-D <,
As tor € [2,00)
r—-2 r=2
2] = C(1 — @) /Q |d(va)|ld(u — wp)|(0 + ld(w)| + d(un))F (6 + |d(w)] + |d(un)])

r 27
< C(1 = a)llvallysld(w — wn)|? (/ (0 + ld(u)] + Id(Uh)D”)
Q
T2 r
S C(1 = a)|[vallrs(0 + [uliy + [unliy) 2 ld(u — wn)l? Vr € [2,00).
J3 can be estimated by use of the inverse inequality

1
|J3] < Cruh™E % vy olu — unli 2.
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Trivially, we get
1Ja| < lonlipllBliper
A combination of the above estimate for J; and Jy yields (3.9) and (3.10). a

n(n+1)

Corollary 3.1. If § =0,0,0, € [L®(Q)]” 2 and u,u € [WH(Q)]", then for the case r € (1,2] we have
the following p-independent estimate for w:

[ — unllz < Clu —unliz < Cluloo + [unli,00) T [d(u — up)lr (3.17)

Ifr > 2, then
lo = onlloz < Clllollzm + lonlz=) =" lo — onl.
Proof. If r € (1,2], we have
ld(w — )2 > C|t)100 + |nl1,00) 2l d(w — wp)|| 2.
Then (3.17) follows immediately. The proof for || — o |12 is similar. 0

4. ERROR BOUNDS WITH RESPECT TO STRONG NORM

Our task in this section is to exemplify the abstract error bounds in Theorem 3.2. First of all, we give some
approximation assumptions on Ty, X}, and M.

Ay for o € [Wh ("5 infrer, |0 — Tz < ch¥|o|er,
Ag: For w € [WHHLH ()] N [Wy ™ (Q)]7, infeex, [[u — v]|x < ch*|u|prr,,
Asz: For p € Wh'(Q) N Ly (Q), infgen, |p — qllar < ch|pli-

Theorem 4.1. Let Assumptions Ay, Az and © hold, a € (ag, Bo), o, Bo € (0,1). Let (oh,un) € Th x V), be
the unique solution of Problem 3.1. Then

1. If r € (1,2], we have
o —onllr < CLh*+, (4.1)
and
e~ wnlsr < Crllu — unlix < C;C1RE, (42)

where
Cr = Cllo ke | Fll-1 fulbirr [wlksr,2, Lo, Br(r) ™, Br(2)71),
and Cy is the constant appeared in korn inequality [17]. Moreover,
| —unj12 < C2hF, | (4.3)
where
Ca = C(C1, Juf1,00, [©nl1,00)-

In particular, when 6 = 1, we even have ||o — o2 < C1hE.
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2. Ifr € [2,00), we have
lo — onllr < Csh*F, (4.4)
and

= willsr < Crllu — uallx < CrCsh™%, (4.5)

Cs = C(lo |k |olk2, | Fll =105 [@lkt1,m5 [©lrs1,2, [Plers [Ple,2, Br(T)7H).

When 8 = 1, we even have

IA

lle — wnll1,2 C,Csh*,

A

7
lo—onll: < Cih'F,

Cs = (Cs, llallzes; lonl L)
3. Furthermore, if Assumptions Az and A hold, then
lp = prllp < Cs¢, 7€ (1,2], (4.6)
with
¢ = min (3 A FHHE—R) prls-1)),

and Cs = C(C1, |pli,x’)-

Ip = pallLe < Ceh™, r € [2,00), (4.7)

CS = 0(037 Iplk,’i')‘

Proof. This is a direct consequence of Theorem 3.2 and Lemma 2.3. a

Remark 4.1. When 7 € (1, 2], the error bound (4.6) for the pressure will be deteriorated. After some careful
analysis, we find that the deterioration happens only in the following limiting cases: (1) n = 2,k = 1, (2)
n=3k=1,(3)n=3k=2(r € (1,3)). If we assume p = h(¥7¥)2=7) in these three cases, the accuracy can
be recovered. In fact, this kind of assumption on p is realistic when y is very small. Recalling that in this case
the proper Sobolev space for the pressure is LZ((2), thus we only need to derive error bounds in L3(€2). Since
the norm on L2(Q2) is weaker than that on L} () in the present situation, we can expect to get y-independent
error bounds, it is just the case.

Corollary 4.1. With the same assumptions as in the third case of Theorem 4.1, we have

lp—pallz < Csh*H, 6 =0, (4.8)
lp—pulle < Csh*, 6=1. (4.9)
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Proof. (4.9) is a direct consequence of (4.7), but (4.8) needs a proof. We slightly modify the proof method in

Section 3. The only difference is that here we use the Assumption © with the exponent 2. We still denote the

right hand side of (3.12) by Jy,- -, Js, then
|1l < Calo — onlr|lval

2 2
|2l < C( = a)|vnllymld(u —un)lr < C(1 - a)ld(uw — ur)l Va2,

|J3] < plu —upli2|vnie,

1, < Calo — ol ||vell,2,

and for any ¢ € M,

|Ja] < lp = qli2|va]1,2-

Combining all these estimates and (4.1) and (4.2), we come to (4.8). By (4.8) and (4.9), we have the optimal

error bounds for the pressure in the sense of [5].
n(n+1)

If Xp & (WH°(Q)|" and Tp, & [L°°(2)]" 2 ~, which would happen in some cases, we cannot obtain an
p—independent estimate for |u — wupl1,2 when 7 € (1,2], and for ||o — o4||L2 when r € [2,00). However, we
compromise to obtain error bounds for all variables in a strong norm. In fact, by virtue of Theorem 4.2, it is
seen that some p—independent estimates can be obtained in these two cases for k > 2. Together with Remark
4.1, it is seen that the only case for accuracy-losing is that the velocity is approximated by an element of a
degree lower than 2.

Theorem 4.2. Let (o, u,p), (0h, un,pp) be solutions of Problem 1.1 and Problem 3.1, respectively. If Assump-
tions A1, As, and A3z hold, then

1. If r € (1,2] and Assumption © holds for the space Xy in the case of r € (1,2], then

w — wupll1,s < C1RF Vs € [r, 2,

where

e k=1,
s = 2n
2, ifk>2,

with
C1 = C(|o |k | Fll=1,0s [6lkt1,55 [Pl [0l k41,25 Br () ™, Br(2) 7).

2. Ifr € [2,00) and Assumption © holds for T}, in the case of s € [2,7],8 and s are the conjugate exponents
of each other, then

T'/ ’
”U - UhlILS' < C2h—k.2_a Vs € [T,72])

where

g [ =L
2, ifk>2,

with

Ca = C(loly o Ifll-1, [ulerrrs [wlet,2, [Pl Ba(r) 7).






