@article{M2AN_2000__34_5_923_0, author = {Matu\v{S}\r{u}-Ne\v{c}asov\'a, \v{S}\'arka and Medvidov\'a-Luk\'a\v{c}ov\'a, M\'aria}, title = {Bipolar barotropic non-newtonian compressible fluids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {923--934}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {5}, year = {2000}, mrnumber = {1837761}, zbl = {0992.76010}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_5_923_0/} }
TY - JOUR AU - MatuŠů-Nečasová, Šárka AU - Medvidová-Lukáčová, Mária TI - Bipolar barotropic non-newtonian compressible fluids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 923 EP - 934 VL - 34 IS - 5 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_5_923_0/ LA - en ID - M2AN_2000__34_5_923_0 ER -
%0 Journal Article %A MatuŠů-Nečasová, Šárka %A Medvidová-Lukáčová, Mária %T Bipolar barotropic non-newtonian compressible fluids %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 923-934 %V 34 %N 5 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_5_923_0/ %G en %F M2AN_2000__34_5_923_0
MatuŠů-Nečasová, Šárka; Medvidová-Lukáčová, Mária. Bipolar barotropic non-newtonian compressible fluids. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 5, pp. 923-934. http://archive.numdam.org/item/M2AN_2000__34_5_923_0/
[1] On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988). | Zbl
and ,[2] Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791. | MR | Zbl
,[3] Young measure-valued solutions for non-Newtonian incompressible fluids. Commun Partial Differential Equations 19 (1994) 1763-1803. | MR | Zbl
, and ,[4] An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions Comm. Math. Phys. 109 (1987) 229-248. | MR | Zbl
,[5] Existence and uniqueness for fluids of second grade Collège de France Seminars, Pitman Res Notes Math. Ser. 109 (1984) 178-197. | MR | Zbl
and ,[6] On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. | MR | Zbl
and ,[7] The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999) | MR | Zbl
and ,[8] Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103. | MR | Zbl
,[9] Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. | MR | Zbl
and ,[10] Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990). | MR | Zbl
,[11] Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996). | Zbl
, , and ,[12] Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I Siberian Math. J. 40 (1999) 351-362. | MR | Zbl
,[13] Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555 | MR | Zbl
,[14] Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483. | EuDML | MR | Zbl
and ,[15] Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. | MR | Zbl
, and ,[16] Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192. | MR | Zbl
and ,[17] Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266 | MR | Zbl
and ,[18] Global solutions to the viscous compressible barotropic multipolar gas. Theoret Comp. Fluid Dynamics 4 (1992) 1-11. | Zbl
, and ,[19] Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244. | MR | Zbl
,[20] A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed, Pitman Res. Notes Math. Ser. 388 (1998) 86-100. | MR | Zbl
,[21] The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods. Appl. Sci. 14 (1991) 93-119. | MR | Zbl
,[22] On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541. | MR | Zbl
,[23] Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993). | MR | Zbl
,[24] Mathematical problems in Viscoelasticity, Longman, New York (1987). | MR | Zbl
, and ,[25] Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51. | MR | Zbl
and ,[26] Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).
,[27] Contributions à l'étude mathématique des problèmes issus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).
,[28] The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992). | MR | Zbl
and ,