@article{M2AN_2000__34_6_1165_0, author = {Vanselow, Reiner}, title = {Convergence analysis for an exponentially fitted finite volume method}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1165--1188}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {6}, year = {2000}, mrnumber = {1812732}, zbl = {0974.65098}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_6_1165_0/} }
TY - JOUR AU - Vanselow, Reiner TI - Convergence analysis for an exponentially fitted finite volume method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1165 EP - 1188 VL - 34 IS - 6 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_6_1165_0/ LA - en ID - M2AN_2000__34_6_1165_0 ER -
%0 Journal Article %A Vanselow, Reiner %T Convergence analysis for an exponentially fitted finite volume method %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 1165-1188 %V 34 %N 6 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_6_1165_0/ %G en %F M2AN_2000__34_6_1165_0
Vanselow, Reiner. Convergence analysis for an exponentially fitted finite volume method. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 6, pp. 1165-1188. http://archive.numdam.org/item/M2AN_2000__34_6_1165_0/
[1] Error Estimate for the Finite-Element Solution of an Elliptic Singularly Perturbed Problem. IMA J. Numer. Anal 15 (1995) 161-196. | MR | Zbl
,[2] Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numer. Math. 58 (1990) 185-202. | MR | Zbl
, , and ,[3] The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Comput. Visual Sci. 1 (1998) 123-136. | Zbl
, and ,[4] Connection between Finite Volume and Mixed Finite Element Methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | MR | Zbl
, and ,[5] Finite Elemente. Springer, Berlin (1992). | Zbl
,[6] Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1991) 17-351. | MR | Zbl
,[7] Convergence of Finite Volume Schemes for Semilinear Convection Diffusion Equations. Numer. Math. 1 (1999) 1-26. | MR | Zbl
, and ,[8] A New Galerkin Framework for the Drift-Diffusion Equation in Semiconductors. East-West J. Numer. Math. 6 (1998) 101-135. | MR | Zbl
, and ,[9] Finite Difference Methods on Irregular Networks. A Generalized Approach to Second Order Problems. Akademie, Berlin (1987). | MR | Zbl
,[10] An Error Estimate for a Finite Volume Scheme for a Diffusion-Convection Problem on a Triangular Mesh. Numer. Methods Partial Differential Equations 11 (1995) 165-173. | MR | Zbl
,[11] Finite Volume Methods for Reaction-Diffusion Problems, in Finite Volumes for Complex Applications, F. Benkhaldoun and R. Vilsmeier Eds., Hermes, Paris (1996) 231-240.
and ,[12] A New Non-Conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem. IMA J. Numer. Anal. 14 (1994) 257-276. | MR | Zbl
and ,[13] Finite Volume and Finite Volume Element Methods for Nonsymmetric Problems. Ph.D. thesis, Texas A&M University (1996).
,[14] Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996). | MR | Zbl
,[15] Analysis of a Cell-Vertex Finite Volume Method for Convection-Diffusion Problems, Math. Comp. 66 (1997) 1369-1406. | MR | Zbl
, and ,[16] Numerical Methods for Singularly Perturbed Differential Equations. Springer, London(1996). | MR | Zbl
, and ,[17] Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles. Comput. Math. Appl 35 (1998) 35-45. | MR | Zbl
and ,[18] A Nonconforming Exponentially Fitted Finite Element Method for Two-Dimensional Drift-Diffusion Models in Semiconductors. Numer. Methods Partial Differential Equations 15 (1999) 133-150. | MR | Zbl
, and ,[19] Convergence Analysis of a Cell-Centered FVM, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermes, Paris (1999) 181-188. | MR | Zbl
and ,[20] Spline Functions: Basic Theory. Wiley, New York (1981). | MR | Zbl
,[21] Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984).
,[22] Variational Crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press (1972) 689-710. | MR | Zbl
,[23] Convergence Analysis of a Finite Volume Method via a New Nonconforming Finite Element Method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. | MR | Zbl
and ,[24] Convergence Analysis for an Exponentially Fitted FVM. Preprint MATH-NM-09-99, TU Dresden (1999).
,[25] A Monotone Finite Element Scheme for Convection-Diffusion Equations. Math. Comp. 68 (1999) 1429-1446. | MR | Zbl
and ,