@article{M2AN_2000__34_6_1203_0, author = {Runborg, Olof}, title = {Some new results in multiphase geometrical optics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1203--1231}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {6}, year = {2000}, mrnumber = {1812734}, zbl = {0972.78001}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_6_1203_0/} }
TY - JOUR AU - Runborg, Olof TI - Some new results in multiphase geometrical optics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1203 EP - 1231 VL - 34 IS - 6 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_6_1203_0/ LA - en ID - M2AN_2000__34_6_1203_0 ER -
Runborg, Olof. Some new results in multiphase geometrical optics. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 6, pp. 1203-1231. http://archive.numdam.org/item/M2AN_2000__34_6_1203_0/
[1] Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model. Geophysics 64 (1999) 230-239.
and ,[2] Big ray tracing : Multivalued travel time field computation using viscosity solutions of the eikonal equation. J. Comput Phys. 128 (1996) 463-474. | Zbl
,[3] Direct solution of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999) 1443-1475. | MR | Zbl
,[4] High frequency limit of the Helmholtz equation. Research report DMA-99-25, Département de Mathématiques et Applications, École Normale Supérieure, Paris (1999). | Numdam | MR | Zbl
, , and ,[5] On zero pressure gas dynamics, in Advances in kinetic theory and Computing, Ser. Adv. Math. Appl. Sci. 22, World Sci. Publishing, River Edge, NJ (1994) 171-190. | MR | Zbl
,[6] Équations de transport unidimensionnelles à coefficients discontinus. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 1097-1102. | MR | Zbl
and ,[7] Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Comm. Partial Differential Equations 24 (1999) 2173-2189. | MR | Zbl
and ,[8] A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15 (1998) 169-190. | Numdam | MR | Zbl
and ,[9] Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998) 2317-2328. | MR | Zbl
and ,[10] High frequency limit of the Helmholtz equation II : Source on a general smooth manifold. Research report, Département de Mathématiques et Applications, École Normale Supérieure, Paris (2000).
, and ,[11] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math., Soc. 277 (1983) 1-42. | MR | Zbl
and ,[12] Generalized variational principles, global weak solutions and behavior with random initial data for Systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380. | MR | Zbl
, and ,[13] Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155. | MR | Zbl
, and ,[14] Multiphase computations in geometrical optics. J. Comput. Appl. Math. 74 (1996) 175-192. | MR | Zbl
and ,[15] Multiphase computations in geometricai opties, in Hyperbolic Problems : Theory, Numerics, Applications, M. Fey and R. Jeltsch Eds., Internat. Ser. Numer. Math. 129, ETH Zentrum, Zurich, Switzerland (1998). | Zbl
and ,[16] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | MR | Zbl
, , and ,[17] Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comp. 69 (2000) 987-1015. | MR | Zbl
and ,[18] On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. | MR | Zbl
,[19] Existence globale pour le système des gaz sans pression. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 171-174. | MR | Zbl
,[20] Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | MR | Zbl
and ,[21] Geometrical theory of diffraction. J. Opt Soc. Amer. 52 (1962) 116-130. | MR | Zbl
,[22] A uniform theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62 (1974) 1448-1461.
and ,[23] On a modification of the geometrical optics method. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 (1964) 664-673.
,[24] Numerical Methods for Conservation Laws. Birkhäuser (1992). | MR | Zbl
,[25] Moment closure hierarchies for kinetic théories. J. Stat Phys. 83 (1996) 1021-1065. | MR | Zbl
,[26] Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | MR | Zbl
and ,[27] Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19 (1966) 215-250. | MR | Zbl
,[28] High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. | MR | Zbl
and ,[29] Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. Partial Differential Equations 22 (1997) 337-358. | MR | Zbl
and ,[30] Multiscale and Multiphase Methods for Wave Propagation. Ph.D. thesis, Department of Numerical Analysis and Computing Science, KTH, Stockholm (1998).
,[31] A slowness matching finite difference method for traveltimes beyond transmission caustics. Preprint, Dept. of Computational and Applied Mathematics, Rice University (1996).
,[32] H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. | MR | Zbl
,[33] Upwind finite-difference calculation of traveltimes. Geophysics 56 (1991) 812-821.
and ,[34] Finite-difference calculation of traveltimes. Bull. Seismol. Soc. Amer. 78 (1988) 2062-2076.
,[35] Linear and Nonlinear Waves. John Wiley & Sons (1974). | MR | Zbl
,[36] Systems of conservation laws with incomplete sets of eigenvectors everywhere, in Advances in Nonlinear Partial Differential Equations and Related Areas, World Sci. Publishing, River Edge, NJ (1998) 399-426. | MR | Zbl
,