@article{M2AN_2000__34_6_1259_0, author = {Kurganov, Alexander and Petrova, Guergana}, title = {Central schemes and contact discontinuities}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1259--1275}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {6}, year = {2000}, mrnumber = {1812736}, zbl = {0972.65055}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_6_1259_0/} }
TY - JOUR AU - Kurganov, Alexander AU - Petrova, Guergana TI - Central schemes and contact discontinuities JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1259 EP - 1275 VL - 34 IS - 6 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_6_1259_0/ LA - en ID - M2AN_2000__34_6_1259_0 ER -
%0 Journal Article %A Kurganov, Alexander %A Petrova, Guergana %T Central schemes and contact discontinuities %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 1259-1275 %V 34 %N 6 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_6_1259_0/ %G en %F M2AN_2000__34_6_1259_0
Kurganov, Alexander; Petrova, Guergana. Central schemes and contact discontinuities. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 6, pp. 1259-1275. http://archive.numdam.org/item/M2AN_2000__34_6_1259_0/
[1] Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C.R. Acad. Sci. Paris Sér. 1320 (1995) 85-88. | MR | Zbl
and ,[2] A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. | MR | Zbl
, and ,[3] High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21 (1999) 294-322. | MR | Zbl
, and ,[4] On Godunov-type methods for gas dynamics. SIAM J. Numer, Anal. 25 (1988) 294-318. | MR | Zbl
,[5] Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392. | MR | Zbl
,[6] The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comp. 32 (1978) 363-389. | MR | Zbl
,[7] High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | MR | Zbl
,[8] Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput Phys. 71 (1987) 231-303. | MR | Zbl
, , and ,[9] Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | MR | Zbl
and ,[10] Conservation laws: stability of numerical approximations and nonlinear regularization. Ph.D. thesis, Tel-Aviv University, Israel (1997).
,[11] A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. (to appear). | MR | Zbl
and ,[12] A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math, (to appear). | MR | Zbl
and ,[13] Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. (submitted). | Zbl
, and ,[14] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. | MR | Zbl
and ,[15] Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954) 159-193. | MR | Zbl
,[16] Towards the ultimate conservative diffrence scheme. V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. | MR | Zbl
,[17] Central WENO schemes for hyperbolic Systems of conservation laws. ESAIM: M2AN 33 (1999) 547-571. | Numdam | MR | Zbl
, and ,[18] A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33 (2000) 407-414. | MR | Zbl
, and ,[19] Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656-672. | MR | Zbl
, and ,[20] Remarks on high-resolution non-oscillatory central schemes for multi-dimensional systems of conservation laws. Part I: An improved quadrature rule for the flux-computation. SIAM J. Sci. Comput. (submitted).
and ,[21] Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. | MR | Zbl
and ,[22] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. | MR | Zbl
and ,[23] On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. | MR | Zbl
and ,[24] A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension. Comput. Methods Appl. Mech. Engrg. 75 (1989) 91-107. | MR | Zbl
and ,[25] High resolution staggered mesh approach for nonlinear hyperbolic Systems of conservation laws. J. Comput Phys. 101 (1992) 314-329. | MR | Zbl
and ,[26] The numerical solution of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1988) 115-173. | MR | Zbl
and ,