The Mortar finite element method for Bingham fluids
ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 153-164.

On considère le problème de l'écoulement d'un fluide visqueux plastique dans une conduite cylindrique. Afin d'approcher ce problème régi par une inéquation variationnelle, nous appliquons la méthode non conforme des éléments finis avec joints. En utilisant des techniques appropriées, on devient en mesure de prouver la convergence de la méthode avec un taux de convergence identique au cas conforme.

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

Classification : 65N30, 65N55, 76A05
Mots-clés : viscoplastic fluid, Bingham model, variational inequality, mortar finite element method, a priori error estimates
@article{M2AN_2001__35_1_153_0,
     author = {Hild, Patrick},
     title = {The {Mortar} finite element method for {Bingham} fluids},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {153--164},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {1},
     year = {2001},
     mrnumber = {1811985},
     zbl = {0990.76042},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2001__35_1_153_0/}
}
TY  - JOUR
AU  - Hild, Patrick
TI  - The Mortar finite element method for Bingham fluids
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2001
SP  - 153
EP  - 164
VL  - 35
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_2001__35_1_153_0/
LA  - en
ID  - M2AN_2001__35_1_153_0
ER  - 
%0 Journal Article
%A Hild, Patrick
%T The Mortar finite element method for Bingham fluids
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2001
%P 153-164
%V 35
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_2001__35_1_153_0/
%G en
%F M2AN_2001__35_1_153_0
Hild, Patrick. The Mortar finite element method for Bingham fluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 153-164. http://archive.numdam.org/item/M2AN_2001__35_1_153_0/

[1] Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite elements and boundary element methods. SIAM J. Numer. Anal. 32 (1995) 985-1016. | Zbl

[2] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl

[3] F. Ben Belgacem, The mixed mortar finite element method for the incompressible Stokes problem: Convergence analysis. SIAM J. Numer. Anal. 37 (2000) 1085-1100. | Zbl

[4] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl

[5] F. Ben Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9 (1999) 287-303. | Zbl

[6] C. Bernardi, N. Debit and Y. Maday, Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21-39. | Zbl

[7] C. Bernardi and V. Girault, A Local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. | Zbl

[8] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | Zbl

[9] P.E. Bjørstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. | Zbl

[10] H. Brezis, Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to nonlinear functional analysis, E. Zarantonello Ed., Academic Press, New York (1971) 101-156. | MR | Zbl

[11] P.-G. Ciarlet, The finite element method for elliptic problems, in Handbook of numerical analysis, Vol. II, Part 1, P.-G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991) 17-352. | Zbl

[12] N. Debit, La méthode des éléments avec joints dans le cas du couplage de méthodes spectrales et méthodes d'éléments finis: résolution des équations de Navier-Stokes. Ph.D. thesis, University of Paris VI, France (1991).

[13] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). | Zbl

[14] R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974) 963-971. | Zbl

[15] R. Glowinski, Lectures on numerical methods for non-linear variational problems. Springer, Berlin (1980). | Zbl

[16] P. Hild, Problèmes de contact unilatéral et maillages éléments finis incompatibles. Ph.D. thesis, University of Toulouse III, France (1998).

[17] J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure. Appl. Math. XX (1967) 493-519. | Zbl

[18] P.P. Mosolov and V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM, J. Mech. Appl. Math. 29 (1965) 545-577. | Zbl

[19] P.P. Mosolov and V.P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes. PPM, J. Mech. Appl. Math. 30 (1966) 841-854. | Zbl

[20] P.P. Mosolov and V.P. Miasnikov, On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM, J. Mech Appl. Math. 31 (1967) 609-613. | Zbl