Besse, Christophe; Bidégaray, Brigitte
Numerical study of self-focusing solutions to the Schrödinger-Debye system
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) no. 1 , p. 35-55
Zbl 0979.65086 | MR 1811980
URL stable : http://www.numdam.org/item?id=M2AN_2001__35_1_35_0

Classification:  35Q55,  35Q60,  65M06,  65M70,  78A60
Dans cet article nous mettons en œuvre différents schémas numériques pour simuler les équations de Schrödinger-Debye qui sont issues de l'optique non linéaire. Comme l'existence de solutions qui explosent en temps fini est un problème ouvert, nous essayons de calculer de telles solutions. On prouve la convergence des méthodes et les résultats numériques semblent en effet montrer qu'au moins pour de petits temps de retard il peut exister des solutions qui explosent en temps fini.
In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.

Bibliographie

[1] G.D. Akrivis, V.A. Dougalis, O.A. Karakashian and W.R. Mckinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation (1997). Preprint. MR 2047201 | Zbl 1039.35115

[2] C. Besse, Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci., Sér. I 326 (1998) 1427-1432. Zbl 0911.65072

[3] C. Besse, Analyse numérique des systèmes de Davey-Stewartson. Ph.D. thesis, University of Bordeaux I, France (1998).

[4] C. Besse, B. Bidégaray and S. Descombes, Accuracy of the split-step schemes for the Nonlinear Schrödinger Equation. (In preparation).

[5] B. Bidégaray, On the Cauchy problem for systems occurring in nonlinear optics. Adv. Differential Equations 3 (1998) 473-496. Zbl 0949.35007

[6] B. Bidégaray, The Cauchy problem for Schrödinger-Debye equations. Math. Models Methods Appl. Sci. 10 (2000) 307-315. Zbl 1010.78010

[7] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. Mckinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London, Ser. A 351 (1995) 107-164. Zbl 0824.65095

[8] T. Cazenave, An introduction to nonlinear Schrödinger equations. Textos de métodos matemáticos 26, Rio de Janeiro (1990).

[9] T. Cazenave, Blow-up and Scattering in the nonlinear Schrödinger equation. Textos de métodos matemáticos 30, Rio de Janeiro (1994).

[10] T. Colin and P. Fabrie, Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete Contin. Dynam. Systems 4 (1998) 671-690. Zbl 0976.76054

[11] M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277-288. Zbl 0477.65086

[12] B.O. Dia and M. Schatzman, Estimations sur la formule de Strang. C. R. Acad. Sci. Paris, Sér. I 320 (1995) 775-779. Zbl 0827.47034

[13] L. Di Menza, Approximations numériques d'équations de Schrödinger non linéaires et de modèles associés. Ph.D. thesis, University of Bordeaux I, France (1995).

[14] P. Donnat, Quelques contributions mathématiques en optique non linéaire. Ph.D. thesis, École Polytechnique, France (1994).

[15] G. Fibich and G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60 (2000) 183-240. Zbl 1026.78013

[16] R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput. 58 (1992) 83-102. Zbl 0746.65066

[17] A.C. Newell and J.V. Moloney, Nonlinear Optics. Addison-Wesley (1992). MR 1163192

[18] J.M. Sanz-Serna Methods for the Numerical Solution of the Nonlinear Schrödinger Equation. Math. Comput. 43 (1984) 21-27 Zbl 0555.65061

[19] Y. R. Shen, The Principles of Nonlinear Optics. Wiley, New York (1984). Zbl 1034.78001

[20] G. Strang On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506-517. Zbl 0184.38503

[21] C. Sulem, P.L. Sulem and A. Patera, Numerical Simulation of Singular Solutions to the Two-Dimensional Cubic Schrödinger Equation. Commun. Pure Appl. Math. 37 (1984) 755-778. Zbl 0543.65081

[22] J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485-507. Zbl 0597.76012