The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the second one based on iso-parametric finite elements in both the static and moving parts. The coupling is obtained by means of the mortar element method (see [7]) and the approximation on the whole domain turns out to be non-conforming. In both cases optimal error estimates are provided. Numerical tests are then proposed in the case of standard first order finite elements to test the reliability and precision of the method. An application of the method to study the influence of the free part movement on the currents distribution is also provided.
Mots-clés : Eddy currents problem, non-conforming finite element approximation, domain decomposition methods
@article{M2AN_2001__35_2_191_0, author = {Buffa, Annalisa and Maday, Yvon and Rapetti, Francesca}, title = {A sliding {Mesh-Mortar} method for a two dimensional {Eddy} currents model of electric engines}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {191--228}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1825696}, zbl = {0986.35111}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_2_191_0/} }
TY - JOUR AU - Buffa, Annalisa AU - Maday, Yvon AU - Rapetti, Francesca TI - A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 191 EP - 228 VL - 35 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_2_191_0/ LA - en ID - M2AN_2001__35_2_191_0 ER -
%0 Journal Article %A Buffa, Annalisa %A Maday, Yvon %A Rapetti, Francesca %T A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 191-228 %V 35 %N 2 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_2_191_0/ %G en %F M2AN_2001__35_2_191_0
Buffa, Annalisa; Maday, Yvon; Rapetti, Francesca. A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 191-228. http://archive.numdam.org/item/M2AN_2001__35_2_191_0/
[1] Sobolev spaces. Academic Press, London (1976). | MR | Zbl
,[2] Formulation of the eddy-current problem. IEEE proceedings 137 (1990).
and ,[3] A sliding mesh for partial differential equations in nonstationary geometries: application to the incompressible Navier-Stockes equations. Tech. rep., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (1994).
, and ,[4] Non-conforming spectral element methodology tuned to parallel implementation. Comput. Meth. Appl. Mech. Engrg. 116 (1994) 59-67. | Zbl
and ,[5] The mortar element method for three dimensional finite elements. RAIRO-Modél. Math. Anal. Numér. 2 (1997) 289-302. | Numdam | Zbl
, ,[6] Optimal finite element interpolation of curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | Zbl
,[7] A new nonconforming approach to domain decomposition: The mortar elements method, in Nonlinear partial differential equations and their applications, H. Brezis and J. Lions, Eds., Collège de France Seminar, Paris, Vol. XI (1994) 13-51. | Zbl
, and ,[8] Électromagnétisme en vue de la modélisation, Springer-Verlag, Paris (1986). | MR | Zbl
,[9] Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles. RAIRO-Modél. Math. Anal. Numér. 23 (1989) 235-259. | Numdam | MR | Zbl
,[10] Le calcul des courants de Foucault en dimension 3, avec le champ électrique comme inconnue. I: Principes. Rev. Phys. Appl. 25 (1990) 189-197.
,[11] Modélisation tridimensionnelle des courants de Foucault à l'aide de méthodes mixtes avec différentes formulations. Rev. Phys. Appl. 25 (1990) 583-592.
, and ,[12] Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. IEEE proceedings 124 (1977) 1026-1034.
,[13] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[14] Analyse mathématique et calcul numérique pour les sciences et les techniques, 2nd edn. Masson, Paris (1987). | MR | Zbl
and ,[15] The movement in field modeling. IEEE, Trans. Magn. 21 (1985) 2296-2298.
, and ,[16] Modeling eddy currents induced by rotating systems. IEEE, Trans. Magn. 34 (1998) 2593-2596.
, , , and ,[17] The electric field in the conductive half-space as a model in mining and petroleum prospection. Math. Meth. Appl. Sci. 11 (1989) 373-401. | Zbl
, and ,[18] Classical electrodynamics. Wiley, New York (1952). | MR | Zbl
,[19] A novel formulation for 3d eddy current problems with moving bodies using a Lagrangian description and bem-fem coupling. IEEE, Trans. Magn. 34 (1998) 3068-3073.
, , , and ,[20] Initial Boundary value problems in mathematical physics. John Wiley and Sons (1986). | MR | Zbl
,[21] A general purpose for restoring inter-element continuity. IEEE, Trans. Magn. 28 (1992) 1728-1731.
, , and ,[22] Finite elements-boundary elements coupling for the movement modeling in two dimensional structures. J. Phys. III 2 (1992) 2035-2044.
, , and ,[23] Numerical approximation of partial differential equations. Ser. Comput. Math. 23, Springer-Verlag (1993). | MR | Zbl
and ,[24] Simulating eddy currents distributions by a finite element method on moving non-matching grids. COMPEL 19 (2000) 10-29. | Zbl
, , and ,[25] Conception of an air-gap element for dynamic analysis of the electromagnetic fields in electric machines. IEEE, Trans. Magn. 18 (1982) 655-659.
, , and ,[26] Coupled elements for problems involving movement. IEEE, Trans. Magn. 26 (1990) 548-550.
, and ,[27] Galerkin finite element methods for parabolic problems. Ser. Comput. Math. 25, Springer (1997). | MR | Zbl
,