By using an inductive procedure we prove that the Galerkin finite element approximations of electromagnetic eigenproblems modelling cavity resonators by elements of any fixed order of either Nedelec's edge element family on tetrahedral meshes are convergent and free of spurious solutions. This result is not new but is proved under weaker hypotheses, which are fulfilled in most of engineering applications. The method of the proof is new, instead, and shows how families of spurious-free elements can be systematically constructed. The tools here developed are used to define a new family of spurious-free edge elements which, in some sense, are complementary to those defined in 1986 by Nedelec.
Mots-clés : electromagnetic eigenproblems, new families of edge elements, Galerkin finite element approximations, convergence, spurious modes, discontinuous material properties, symmetry exploitation, mixed boundary conditions, discrete compactness
@article{M2AN_2001__35_2_331_0, author = {Caorsi, Salvatore and Fernandes, Paolo and Raffetto, Mirco}, title = {Spurious-free approximations of electromagnetic eigenproblems by means of {Nedelec-type} elements}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {331--354}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1825702}, zbl = {0993.78016}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_2_331_0/} }
TY - JOUR AU - Caorsi, Salvatore AU - Fernandes, Paolo AU - Raffetto, Mirco TI - Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 331 EP - 354 VL - 35 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_2_331_0/ LA - en ID - M2AN_2001__35_2_331_0 ER -
%0 Journal Article %A Caorsi, Salvatore %A Fernandes, Paolo %A Raffetto, Mirco %T Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 331-354 %V 35 %N 2 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_2_331_0/ %G en %F M2AN_2001__35_2_331_0
Caorsi, Salvatore; Fernandes, Paolo; Raffetto, Mirco. Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 331-354. http://archive.numdam.org/item/M2AN_2001__35_2_331_0/
[1] Vector potential in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | Zbl
, , and ,[2] New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61 (1987) 3919-3921.
and ,[3] Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math. 61 (1992) 39-57. | Zbl
and ,[4] Fortin operator and discrete compactness for edge elements. Numer. Math. 86 (2000). DOI 10.1007/s002110000182. | MR | Zbl
,[5] A note on the discrete compactness property and the de Rham complex. Technical Report AM188, Department of Mathematics, Penn State University, 1999. Appl. Math. Lett. 14 (2001) 33-38. | Zbl
,[6] Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1999) 1264-1290. | Zbl
, , and ,[7] Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proceedings, part A 135 (1988) 493-500.
,[8] A rationale for ‘edge-elements' in 3-D fields computations. IEEE Trans. Magnet. 24 (1988) 74-79.
,[9] Solving maxwell's equations in a closed cavity, and the question of ‘spurious modes'. IEEE Trans. Magnet. 26 (1990) 702-705.
,[10] Edge elements and the inclusion condition. IEEE Microwave Guided Wave Lett. 5 (1995) 222-223.
, and ,[11] Towards a good characterization of spectrally correct finite element methods in electromagnetics. COMPEL 15 (1996) 21-35. | Zbl
, and ,[12] Do covariant projection elements really satisfy the inclusion condition? IEEE Trans. Microwave Theory Tech. 45 (1997) 1643-1644.
, and ,[13] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. | Zbl
, and ,[14] Characteristic conditions for spurious-free finite element approximations of electromagnetic eigenproblems, in Proceedings of ECCOMAS 2000, Barcelona, Spain (2000) 1-13.
, and ,[15] Numerical solution of dielectric loaded waveguides: I-finite-element analysis. IEEE Trans. Microwave Theory Tech. 18 (1970) 1124-1131.
and ,[16] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[17] Covariant projection elements for 3d vector field problems. IEEE Trans. Magnet. 24 (1988) 397-400.
, and ,[18] Finite element analysis of all modes in cavities with circular symmetry. IEEE Trans. Microwave Theory Tech. 30 (1982) 1975-1980.
, and ,[19] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl
and ,[20] Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). | Zbl
and ,[21] Vector finite element solution of anisotropic waveguides using novel triangular elements. Electron. Com. Japan, Part 2, 71 (1988) 71-80.
,[22] A three dimensional analysis of rf electromagnetic fields by the finite element method. IEEE Trans. Magnet. 19 (1983) 2417-2420.
, , and ,[23] Numerical studies of the shapes of drift tubes and Linac cavities. IEEE Trans. Nucl. Sci. 12 (1965) 153-155.
,[24] Computer designed 805 MHz proton Linac cavities. The Review of Scientific Instruments 37 (1966) 755-762.
, and ,[25] On a discrete compactness property for the Nedelec finite elements. J. Fac. Sci., Univ. Tokyo 36 (1989) 479-490. | Zbl
,[26] Theoretical analysis of Nedelec's edge elements, in Proceedings of Computational Engineering Conference, Tokyo, Japan, May 26-28 (1999).
,[27] Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges. IEEE Trans. Microwave Theory Tech. 39 (1991) 501-505.
and ,[28] Discrete compactness and the approximation of Maxwell’s equations in . Math. Comput. 70 (2001) 507-523. | Zbl
and ,[29] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[30] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl
,[31] Rf tests of a band overlap free daw accelerating structure, in Proceedings of the IEEE 1991 Particle Accelerator Conference, San Francisco, USA (1991) 3026-3028.
, and ,[32] Curvilinear and higher order ‘edge' finite elements in electromagnetic field computation. IEEE Trans. Magnet. 29 (1993) 1491-1494.
and ,[33] Combined finite element-modal solution of three-dimensional eddy current problems. IEEE Trans. Magnet. 24 (1988) 2685-2687.
and ,[34] Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propagation 47 (1999) 1244-1253. | Zbl
,[35] Analysis of 3-D microwave resonators using covariant-projection elements. IEEE Trans. Microwave Theory Tech. 39 (1991) 1895-1899.
and ,