On étudie ici le comportement au voisinage de la frontière du domaine de solutions de problèmes elliptiques à coefficients oscillant périodiquement. Les résultats, connus pour des frontières plannes, sont étendus au cas de frontières courbes et pour un milieu stratifié. On généralise pour cela la notion de couche limite et on définit des correcteurs de frontière qui conduisent à une approximation d’ordre dans la norme énergie.
In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order in the energy norm.
Mots-clés : homogenization, generalized boundary layers, energy error estimates
@article{M2AN_2001__35_3_407_0, author = {Neuss-Radu, Maria}, title = {The boundary behavior of a composite material}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {407--435}, publisher = {EDP-Sciences}, volume = {35}, number = {3}, year = {2001}, mrnumber = {1837078}, zbl = {0985.35092}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_3_407_0/} }
TY - JOUR AU - Neuss-Radu, Maria TI - The boundary behavior of a composite material JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 407 EP - 435 VL - 35 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_3_407_0/ LA - en ID - M2AN_2001__35_3_407_0 ER -
Neuss-Radu, Maria. The boundary behavior of a composite material. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 3, pp. 407-435. http://archive.numdam.org/item/M2AN_2001__35_3_407_0/
[1] Sobolev Spaces. Academic Press, New York, San Francisco, London (1975). | MR | Zbl
,[2] Manifolds, tensor analysis, and applications. 2nd edn. Appl. Math. Sci. 75 Springer-Verlag, New York (1988). | MR | Zbl
, and ,[3] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl
,[4] Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209-243. | EuDML | Numdam | Zbl
and ,[5] Solution of interface problems by homogenization I. SIAM J. Math. Anal. 7 (1976) 603-634. | Zbl
,[6] Solution of interface problems by homogenization II. SIAM J. Math. Anal. 7 (1976) 635-645. | Zbl
,[7] Homogenization: Averaging processes in periodic media. Mathematics and its Applications 36, Kluwer Academic Publishers, Dordrecht (1990). | MR | Zbl
and ,[8] Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978). | MR | Zbl
, and ,[9] Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions on the half space, in Proc. Internat. Symposium SDE, K. Ito Ed. J. Wiley, New York (1978) 21-40. | Zbl
, and ,[10] Asymptotics of solutions to the Poisson problem in a perforated domain with corners. J. Math. Pures Appl. 76 (1997) 893-911. | Zbl
and ,[11] Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Heidelberg, New York (1983). | MR | Zbl
and ,[12] On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sci. Norm. Sup. Pisa, Serie IV 23 (1996) 404-465. | Numdam | Zbl
and ,[13] Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin Heidelberg, New York (1994). | MR | Zbl
, and ,[14] Some methods in mathematical analysis of systems and their Control. Science Press, Beijing, Gordon and Breach, New York (1981). | MR | Zbl
,[15] First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, in Proc. Roy. Soc. Edinburgh., Sect A 127 6 (1997) 1263-1299. | Zbl
and ,[16] Homogenization and Multigrid. Preprint 1998-04, SFB 359, University of Heidelberg (1998). | MR | Zbl
, and ,[17] A result on the decay of the boundary layers in the homogenization theory. Asympto. Anal. 23 (2000) 313-328. | Zbl
,[18] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl
,[19] Mathematical problems in elasticity and Homogenization. Studies in Mathematics and its Applications 26, North-Holland, Amsterdam (1992). | MR | Zbl
, and ,[20] Exercices sur les méthodes asymptotiques et l'homogénéisation. Masson, Paris (1993).
and ,[21] Non-homogenous media and vibration theory. Lect. Notes Phys. 127, Springer-Verlag, Berlin (1980). | MR | Zbl
,[22] Partielle differentialgleichungen. Teubner-Verlag, Stuttgart (1982). | MR | Zbl
,