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Abstract. We consider a model for phase separation of a multi-component alloy with non-smooth free
energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds
for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme
for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation
has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments
with three components in one and two space dimensions are presented.
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1. Introduction

It is the goal of this paper to develop and analyse a finite element approximation of the Cahn-Hilliard
system with a degenerate mobility matrix. The Cahn-Hilliard system models phase separation and coarsening
phenomena in multi-component systems. Examples are alloy or polymer systems consisting of N different
components. To understand the factors that influence phase separation and coarsening is of fundamental
importance in applications. The material behaviour and in particular its lifetime drastically depends on how
quickly the structure coarsens. Since it is difficult to obtain information by experiments reliable numerical
simulations are very important.

If we denote by un the fractional concentration of the nth component physical meaningful values of the vector
u = (u1, ..., un)T have to be nonnegative and to fulfill the constraint

N∑
n=1

un = 1. (1.1)
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One derives from the mass balance law that the individual components un fulfill the continuity equation

∂
∂tun +∇ · Jn = 0, (1.2)

where the fluxes Jn have to be determined. Neglecting the constraint (1.1) for the moment and assuming that
the system is purely frictional and driven by chemical potential gradients, ∇wn, (see [29]) one obtains

Jn = −ln(un)∇wn,

where typically ln(un) := Dnun with Dn ∈ R being the bare mobility of the nth component. In order for the
constraint (1.1) to be fulfilled during the evolution [16] (see also [29]) proposed that the fluxes Jn fulfill

N∑
n=1

Jn = 0 (1.3)

and that this is achieved through the presence of a force F which is such that the modified fluxes

Jn = ln(un) (−∇wn − F ) (1.4)

fulfill the incompressibility condition (1.3). Using (1.3) and (1.4) we obtain that

F = −
(

N∑
n=1

ln(un)

)−1 N∑
p=1

lp(up)∇wp.

Hence,

∂
∂tu = ∇ · (L(u)∇w), (1.5)

where L is a N ×N mobility matrix and has the form

{L(u)}np ≡ Lnp(u) := ln(un)

δnp −( N∑
q=1

lq(uq)

)−1

lp(up)

 ; (1.6)

where δnp is the Kronecker delta.
The chemical potentials w = (w1, ..., wN )T will be defined as the variational derivative of the Ginzburg-

Landau free energy

E(u) :=
∫

Ω

(
γ
2 |∇u|2 + Ψ(u)

)
dx, (1.7a)

where Ω is a bounded domain in Rd, d ≤ 3, γ > 0 is the gradient energy coefficient and

Ψ(u) := Ψ1(u)− 1
2u

TAu (1.7b)

is the homogeneous free energy density. Here, A is a constant symmetric N ×N matrix taking into account the
interaction between different components and the term Ψ1 represents the entropy of the system and usually is
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taken to be of the form

Ψ1(u) := θ
N∑
n=1

un lnun with absolute temperature θ > 0 (1.8a)

or

Ψ1(u) :=

{
0 if u ∈ QN ,
∞ elsewhere.

(1.8b)

To define the second expression, which is the deep quench limit of the logarithmic Ψ1 (see [10]), we used the
Gibbs simplex

QN := {ζ ∈ M(1) : ζ ≥ 0}, where ∀ µ ∈ R M(µ) := {ζ ∈ RN :
N∑
n=1

ζn = µ} (1.9)

which is set of all physical meaningful values for the concentration vector.
Now the chemical potentials wn are defined as the variational derivative of E with respect to un, i.e. wn = δE

δun
which implies

w = −γ∆u+DΨ1(u)−Au, (1.10)

where {DΨ1(u)}n := ∂Ψ1
∂un

(u). (1.10), together with equation (1.5), has to hold in ΩT := Ω×(0, T ) where T > 0
is an arbitrary but fixed time. We supplement this system with the boundary and initial conditions

∂
∂�u = L(u) ∂

∂�w = 0 on ∂Ω× (0, T ), (1.11a)

u(x, 0) = u0(x) ∀ x ∈ Ω; (1.11b)

with ν being normal to ∂Ω where ∂Ω is assumed to be of Lipschitz class. On the initial data we make the
following assumptions

a) 0 ≤ u0(x) and b) N
∑
− u0(x) = 1 ∀ x ∈ Ω. (1.12)

Here and throughout we write ζn for the nth component of ζ and set

∑
− ζ := 1

N

N∑
n=1

ζn, (I − 1
∑
− )ζ := ζ − 1

∑
− ζ ,

where 1 ∈ RN is defined by {1}n = 1, n = 1→ N .
We note that the boundary conditions ensure that

d
dt

∫
Ω

udx = 0 and
d
dt
E(u) ≤ 0.

Hence, the total mass is conserved and the free energy E serves as a Lyapunov functional for the system.
The discrete analogue of these two properties will be of major importance when we analyse the finite element
approximation.

Cahn-Hilliard systems to model phase separation in multicomponent systems were first studied by Morral
and Cahn [27] and de Fontaine [15]. An existence result in the case of a constant mobility matrix L has been first
given by Elliott and Luckhaus [20]. The fact that Cahn-Hilliard systems model phase separation phenomena in
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multicomponent systems was supported by numerical simulations performed by Eyre [21], Blowey et al. [9] and
Barrett and Blowey [2]. The latter paper also derives error bounds for a finite element approximation.

All the papers mentioned so far consider the case of a constant mobility matrix. But as we have seen in
the derivation of the Cahn-Hilliard system above the mobility matrix in general is concentration dependent
(see (1.6)). In the following we will assume that the individual mobility functions ln ∈ C([0, 1]) fulfill for some
lmin, lmax ∈ R+

lmin s ≤ ln(s) ≤ lmax s ∀ s ∈ [0, 1]. (1.13)

It follows from (1.6) and (1.13) that for all ζ ∈ QN

[L(ζ) ]T ≡ L(ζ), L(ζ) 1 = 0 (1.14a)

and for all η ∈ RN

ηTL(ζ)η ≡
N∑
n=1

N∑
p=1

ηnLnp(ζ) (ηp − ηn) ≡ −
N∑
n=2

n−1∑
p=1

Lnp(ζ) (ηn − ηp)2

≡
(
1T l(ζ)

)−1
N∑
n=2

n−1∑
p=1

ln(ζn) lp(ζp) (ηn − ηp)2 (1.14b)

where 0 ∈ RN and l(ζ) are defined by

{0}n := 0, and {l(ζ)}n := ln(ζn), n = 1→ N.

Equations (1.14a,b) show that the matrix L(ζ) is positive semi-definite for all ζ ∈ QN with 1 an eigenvector with
eigenvalue zero. As the system is solved on M(1) a degeneracy in a direction orthogonal to the corresponding
tangent spaceM(0) is of no relevance for the analysis (see [19,20]). But equation (1.14b) and assumption (1.13)
imply that L also degenerates in tangential directions if one of the components becomes zero. Hence, the
resulting equations (1.5) and (1.10) are a system of fourth order degenerate parabolic equations. Existence of
weak solutions to the degenerate Cahn-Hilliard system has been shown by Elliott and Garcke [19] (see also [18]).
But so far no uniqueness result is known for this type of systems. For an overview on the vast literature on
mathematical results for the Cahn-Hilliard model we refer to Elliott [17] and Novick-Cohen [28].

In this paper a first attempt to numerically approximate solutions to the degenerate Cahn-Hilliard system
is made. The numerical method uses continuous piecewise linear finite elements to discretise u and w in space
and uses essentially an implicit Euler scheme for the time discretisation. The ideas to numerically treat the
degeneracy of the system is based on previous work by the authors on scalar degenerate parabolic equations of
fourth order (see [7,8]). We also make use of ideas introduced by Barrett and Blowey who studied finite element
approximations for Cahn-Hilliard systems with a concentration dependent but non-degenerate mobility matrix
(see [4,5]). We refer also to the work of Zhornitskaya and Bertozzi [30] and Grün and Rumpf [24] who have also
developed numerical methods for approximating scalar degenerate parabolic equations of fourth order. Their
approach makes use of entropy type estimates (see also Th. 2.3 in this paper).

The outline of this paper is as follows. After introducing some notation and some auxiliary results we
introduce a fully practical finite element approximation for the degenerate Cahn-Hilliard system in the deep
quench limit. We show stability bounds that hold in all space dimensions and convergence in the case of one
space dimension. In addition, we discuss how entropy estimates, which give H2-estimates for the concentration
vector u, can be obtained. The finite element approximation for the Cahn-Hilliard system with the deep quench
limit potential leads to a discrete variational inequality. In Section 3 convergence of an algorithm for solving
the discrete variational inequality is shown. In Section 4 we show how our method has to be modified in order
to deal with a logarithmic free energy. Finally, we report on some numerical experiments in Section 5. In
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particular, we compare the numerical results to qualitative predictions of the asymptotic analysis of Garcke
and Novick-Cohen [23]. The presented numerical results show the occurrence of chain like patterns and wetting
phenomena are also observed.

1.1. Notation and auxiliary results

We have adopted the standard notation for Sobolev spaces, denoting the norm ofWm,p(Ω) (m ∈ N, p ∈ [1,∞])
by ‖·‖m,p and the semi-norm by |·|m,p. For p = 2, Wm,2(Ω) will be denoted by Hm(Ω) with the associated norm
and semi-norm written, as respectively, ‖ ·‖m and | · |m. Furthermore, we define L2(ΩT ) := L2(0, T ;L2(Ω)). For
η ∈ H1(Ω), ∇η denotes the N × d matrix with entries {∇η}nm := ∂

∂xm
ηn and then ∂

∂�η := (∇η)ν. Finally,

for an N × d matrix Λ with entries Λnm ∈ H1(Ω), ∇ · Λ is the N × 1 vector with entries
∑d
m=1

∂
∂xm

Λnm,
n = 1 → N . Throughout (·, ·) denotes the standard L2 inner product over Ω. This is naturally extended to
vector and matrix functions, e.g. for I × J matrices Λ(x) and Ξ(x) with entries in L2(Ω)

(Λ,Ξ) :=
I∑
i=1

J∑
j=1

(Λij ,Ξij) :=
I∑
i=1

J∑
j=1

∫
Ω

Λij(x) Ξij(x) dx. (1.15)

In addition 〈·, ·〉 denotes the duality pairing between (H1(Ω))′ and H1(Ω), which is extended to vector functions
in the standard way. We introduce the following convex sets:

K := {η ∈H1(Ω) : η(x) ≥ 0 for a.e. x ∈ Ω },
Km := {η ∈K :

∫
− η = m :=

∫
− u0 and η(x) ∈M(1) for a.e. x ∈ Ω };

where ∫
− η :=

1
|Ω|

∫
Ω

η(x) dx ∀ η ∈ L2(Ω).

For later purposes, we recall the following well-known Sobolev interpolation results, e.g. see Adams and
Fournier [1]: Let p ∈ [1,∞], m ≥ 1,

r ∈


[p,∞] if m− d

p > 0,
[p,∞) if m− d

p = 0,
[p,− d

m−(d/p) ] if m− d
p < 0,

and µ = d
m

(
1
p −

1
r

)
. Then there is a constant C depending only on Ω, p, r,m such that for all v ∈ Wm,p(Ω)

the inequality

‖v‖0,r ≤ C‖v‖1−µ0,p ‖v‖µm,p (1.16)

holds. It is convenient to introduce the “inverse Laplacian” operator G : F → V such that

(∇Gv,∇η) = 〈v, η〉 ∀ η ∈ H1(Ω), (1.17)

where
F :=

{
v ∈ (H1(Ω))′ : 〈v, 1〉 = 0

}
and V := {v ∈ H1(Ω) : (v, 1) = 0}.

The well-posedness of G follows from the Lax-Milgram theorem and the Poincaré inequality

|η|0,p ≤ C(|η|1,p + |(η, 1)|) ∀ η ∈W 1,p(Ω) and p ∈ [1,∞]. (1.18)
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One can define a norm on F by

‖v‖−1 := |Gv|1 ≡ 〈v,Gv〉
1
2 ∀ v ∈ F . (1.19)

We note also for future reference that using a Young’s inequality yields for all α > 0 that

〈v, η〉 = (∇Gv,∇η) ≤ ‖v‖−1|η|1 ≤ 1
2α‖v‖2−1 + α

2 |η|21 ∀ v ∈ F , η ∈ H1(Ω). (1.20)

Throughout the paper, the norm ‖ · ‖ operating on matrices is that subordinate to the Euclidean vector norm,
‖η‖2 := ηTη for η ∈ RN , i.e. the spectral radius for symmetric matrices. C denotes a generic constant
independent of h, τ , σ and ε, the mesh and temporal discretisation parameters and the regularisation parameters.
In addition C(a1, · · · , aI) denotes a constant depending on the nonnegative parameters {ai}Ii=1, such that for
all C1 > 0 there exists a C2 > 0 such that C(a1, · · · , aI) ≤ C2 if ai ≤ C1 for i = 1 → I. Finally, we define
en ∈ RN , n = 1→ N, by enp := δnp.

2. Finite element approximation

Let (P) denote the degenerate system (1.5), (1.10) and (1.11a,b). We consider the finite element approxima-
tion of the problem (P) under the following assumptions on the meshes:
(A) Let Ω be a polyhedral domain. Let {T h}h>0 be a quasi-uniform family of partitionings of Ω into disjoint

open simplices κ with hκ := diam(κ) and h := maxκ∈T h hκ, so that Ω = ∪κ∈T hκ.
Associated with T h is the finite element space

Sh := {χ ∈ C(Ω) : χ |κ is linear ∀ κ ∈ T h} ⊂ H1(Ω).

We extend this definition to vector functions, i.e. χ ∈ Sh ⇒ χn ∈ Sh, n = 1 → N . Let J be the set of nodes
of T h and {xj}j∈J the coordinates of these nodes. Let {βj}j∈J be the standard basis functions for Sh; that is
βj ∈ Kh and βj(xi) = δij for all i, j ∈ J . We introduce πh : C(Ω)→ Sh, the interpolation operator, such that
πhη(xj) = η(xj) for all j ∈ J . A discrete semi-inner product on C(Ω) is defined by

(η1, η2)h :=
∫

Ω

πh(η1(x) η2(x)) dx ≡
∑
j∈J

ωj η1(xj) η2(xj), (2.1)

where ωj := (1, βj). The induced semi-norm is then | · |h := [(· , ·)h]
1
2 . We extend naturally the above definitions

to vector functions; i.e. πh : C(Ω) → Sh with {πhη}n := πhηn, then (2.1) is extended as in (1.15). We
introduce the L2 projections Qh

1 , Qh
2 : L2(Ω) → Sh, where {Qh

i η}n := Qhi ηn, and Qh1 , Qh2 : L2(Ω) → Sh are
defined by

(Qh1η, χ) = (Qh2η, χ)h = (η, χ) ∀ χ ∈ Sh. (2.2)

Let ψ1 ∈ C([0, 1]) be convex. We then introduce the homogeneous free energy density Ψ ∈ C([0, 1]N) defined by

Ψ(ζ) := Ψ1(ζ)− 1
2ζ

TAζ , where Ψ1(ζ) :=
N∑
n=1

ψ1(ζn) . (2.3)

Obviously all the examples of Ψ given in Section 1 can be written in this form. For example the logarithmic case
corresponds to ψ1(s) := θ s ln s, and the deep quench case to ψ1 ≡ 0. In this section and the next we assume
that ψ1 ∈ C1([0, 1]). This obviously excludes the logarithmic case. Modifications to our approach will be made
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in Section 4 to cope with this case. For our numerical approximation of problem (P) we split A ≡ A+ + A−,
where A+(−) is symmetric positive (negative) semi-definite.

In addition we regularise the degenerate mobility matrix L by introducing Lσ, where for all σ ∈ (0, 1) and
ζ ∈ QN

{Lσ(ζ)}np ≡ Lσnp(ζ) := lσn(ζn)
(
δnp −

(
1T lσ(ζ)

)−1
lσp (ζp)

)
; (2.4a)

and {lσ(ζ)}n := lσn(ζn) := ln(ζn) + σ, n = 1→ N. (2.4b)

It follows from (2.4a,b), similarly to (1.14a,b), that for all ζ ∈ QN and η ∈ RN

[Lσ(ζ) ]T ≡ Lσ(ζ), Lσ(ζ) 1 = 0 and (2.5a)

ηTLσ(ζ)η ≡
(
1T lσ(ζ)

)−1
N∑
n=2

n−1∑
p=1

lσn(ζn) lσp (ζp) (ηn − ηp)2 . (2.5b)

If η ∈M(0), it follows that ηn =
∑
− (ηn1− η), n = 1→ N . Hence we have that

‖η‖2 = 1
N

N∑
n=1

N∑
p=1

ηn (ηn − ηp) = 1
N

N∑
n=2

n−1∑
p=1

(ηn − ηp)2 ∀ η ∈M(0). (2.6)

Therefore combining (2.5b), (2.4b), (1.13) and (2.6) we have that

Lσmin ‖η‖2 ≤ ηTLσ(ζ)η ∀ ζ ∈ QN , η ∈M(0); (2.7)

where Lσmin := Nσ2/(lmax +Nσ). In addition, it is easily established for all ζ ∈ QN and η ∈ RN that

N∑
n=2

n−1∑
p=1

l(σ)
n (ζn) l(σ)

p (ζp) (ηn − ηp)2 ≤
N∑
n=1

∑
p6=n

l(σ)
n (ζn) l(σ)

p (ζp) (η2
n + η2

p)

= 2
N∑
n=1

( ∑
p6=n

l(σ)
p (ζp)

)
l(σ)
n (ζn) η2

n. (2.8)

In the above and throughout we adopt the notation l(σ)
n , which is an abbreviation for either “with” or “without”

the superscript σ. Therefore combining (1.14b), (2.5b), (2.4b), (1.13) and (2.8), we have that

ηTL(σ)(ζ)η ≤ L(σ)
max ‖η‖2 ∀ ζ ∈ QN , η ∈ RN , (2.9)

where Lmax := 1
2 lmax and Lσmax := 1

2 (lmax +Nσ).
For the finite element approximation of (P) by Sh, we introduce

Kh := {χ ∈ Sh : χ(xj) ≥ 0 ∀ j ∈ J },
Kh
m := {χ ∈Kh :

∫
− χ = m :=

∫
− u0 and χ(xj) ∈M(1) ∀ j ∈ J }.
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Let 0 ≡ t0 < t1 < · · · tK−1 < tK ≡ T be a partitioning of [0, T ] into variable time steps τk := tk − tk−1,
k = 1 → K. Let τ := maxk=1→K τk. Assuming that ψ1 ∈ C1([0, 1]), we then consider the following fully
practical finite element approximation of (P):

(Ph,τ
σ ) For k ≥ 1, find {Uk

σ,W
k
σ} ∈Kh × Sh such that(

Ukσ−Uk−1
σ

τk
,χ
)h

+
(
Lσ(Uk−1

σ )∇W k
σ,∇χ

)
= 0 ∀ χ ∈ Sh, (2.10a)

γ(∇Uk
σ,∇(χ−Uk

σ)) + (DΨ1(Uk
σ)−A−Uk

σ −W k
σ,χ−Uk

σ)h ≥ (A+Uk−1
σ ,χ−Uk

σ)h ∀ χ ∈Kh; (2.10b)

where U0
σ ∈Kh

m is an approximation of u0 ∈Km, e.g. U0
σ ≡ Qh

2u
0.

Below we recall some well-known results concerning Sh:

|χ|m,p2 ≤ Ch
d(p1−p2)
p1p2 |χ|m,p1 ∀ χ ∈ Sh, 1 ≤ p1 ≤ p2 ≤ ∞, m = 0 or 1; (2.11)

|χ|1,p ≤ Ch−1|χ|0,p ∀ χ ∈ Sh, 1 ≤ p ≤∞; (2.12)

lim
h→0
‖(I − πh)η‖0,∞ = 0 ∀ η ∈ C(Ω). (2.13)

|(I −Qh1 )η|0 + h|(I −Qh1 )η|1 ≤ Chm|η|m ∀ η ∈ Hm(Ω), m = 1 or 2; (2.14)

|χ|20 ≤ |χ|2h ≤ (d+ 2)|χ|20 ∀ χ ∈ Sh; (2.15)

|(vh, χ)h − (vh, χ)| ≤ Ch1+m‖vh‖m‖χ‖1 ∀ vh, χ ∈ Sh, m = 0 or 1; (2.16)

and if d = 1

|(I − πh)η|m,r ≤ Ch1−m|η|1,r ∀ η ∈W 1,r(Ω), m = 0 or 1, any r ∈ [1,∞]; (2.17)

lim
h→0
‖(I − πh)η‖1 = 0 ∀ η ∈ H1(Ω). (2.18)

If d = 1, then a simple consequence of (2.16) and (2.17) is that

|(v, η)h − (v, η)| ≤ |(πhv, πhη)h − (πhv, πhη)|+ |((I − πh)v, πhη)|+ |(v, (I − πh)η)|
≤ C

[
|(I − πh)v|0 + h|v|0

]
‖η‖1 ∀ v ∈ C(Ω), ∀ η ∈ H1(Ω). (2.19)

Comparing Qh2η with Qh1η and noting (2.16), (2.12) and (2.14) yields that

|(I −Qh2 )η|0 + h|(I −Qh2 )η|1 ≤ Ch|η|1 ∀ η ∈ H1(Ω). (2.20)

It follows from (2.2) that

(Qh2η)(xj) ≡
(η, βj)
(1, βj)

∀ j ∈ J =⇒ ‖Qh2η‖0,∞ ≤ ‖η‖0,∞ ∀ η ∈ L∞(Ω).

(2.21)

Similarly to (1.17), we introduce the operator Ĝh : Fh → V h such that

(∇Ĝhv,∇χ) = (v, χ)h ∀ χ ∈ Sh, (2.22)

where

V h := {vh ∈ Sh : (vh, 1) = 0} and Fh := {v ∈ C(Ω) : (v, 1)h = 0}. (2.23)
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Then Ĝh : Fh → V h is defined by {Ĝhv}n := Ĝhvn, where

V h := { vh : vh
n ∈ V h , n = 1→ N, and vh(xj) ∈ M(0), ∀ j ∈ J }, (2.24a)

Fh := { v : vn ∈ Fh , n = 1→ N, and v(xj) ∈M(0), ∀ j ∈ J } ⊃ V h . (2.24b)

It is easily deduced from (1.19) and the above that under the assumptions (A)

C1 ‖vh‖−1 ≤ |Ĝhvh|1 ≤ C2 ‖vh‖−1 ∀ vh ∈ V h, (2.25)

see for example Barrett and Blowey [2]. We introduce the following anisotropic version of Ĝh : given σ ∈ R+

and qh ∈Kh
m, Ĝh

σ,qh : Fh → V h is defined by

(Lσ(qh)∇Ĝh
σ,qhv,∇χ) = (v,χ)h ∀ χ ∈ Sh. (2.26)

On noting (2.15), (1.18) and (2.7) we deduce the well-posedness of Ĝh and of Ĝh
σ,qh . We note for future reference

that (2.22) yields

(v,χ)h ≡ (∇Ĝhv,∇χ) ≤ |Ĝhv|1|χ|1 ∀ v ∈ Fh , χ ∈ Sh . (2.27)

Choosing χ ≡ en, n = 1 → N , and χ ≡ χ1, ∀ χ ∈ Sh, in (2.10a) and noting (2.5a) yields that Uk
σ ∈ Kh

m,
k = 1→ K. Hence it follows from (2.10a), (2.26), (2.24a,b), (2.5a), (2.7) and (1.18) that

W k
σ ≡ −Ĝh

σ,Uk−1
σ

(U
k
σ−Uk−1

σ

τk
) + Ξkσ1 + Λk

σ, (2.28)

where Ξkσ ∈ Sh and Λk
σ ∈M(0). Hence (Ph,τσ ) can be rewritten as:

Find {Uk
σ,Ξkσ,Λ

k
σ} ∈Kh

m × Sh ×M(0) such that

γ(∇Uk
σ,∇(χ−Uk

σ)) + (DΨ1(Uk
σ)−A−Uk

σ + Ĝh
σ,Uk−1

σ
(U

k
σ−Uk−1

σ

τk
),χ−Uk

σ)h

≥ (Ξkσ1 + Λk
σ +A+Uk−1

σ ,χ−Uk
σ)h ∀ χ ∈Kh. (2.29)

Theorem 2.1. Let Ω and T h be such that assumption (A) holds and let U0
σ ∈Kh

m. In addition let Lσ satisfy
(2.4a,b) and ψ1 ∈ C1([0, 1]) be convex. Then for all h > 0 and time partitions {τk}Kk=1 there exists a solution
{Uk

σ,W
k
σ}Kk=1 to (Ph,τ

σ ). Moreover, {Uk
σ}Kk=1 is unique and the following stability bounds hold

max
k=1→K

‖Uk
σ‖21 +

K∑
k=1

τ2
k |
Ukσ−Uk−1

σ

τk
|21 +

K∑
k=1

τk |[Lσ(Uk−1
σ )]

1
2∇W k

σ|20

+ [Lσmax]−1
K∑
k=1

τk |Ĝh(U
k
σ−Uk−1

σ

τk
)|21 ≤ C

[
|U0

σ|21 + 1
]
. (2.30)

Furthermore if Ukσ,n(xj) > 0, then W k
σ,n(xj) is unique.

Proof. We note that (2.29) with χ ∈ Kh
m is the Euler-Lagrange variational inequality of the minimization

problem

min
vh∈Kh

m

Eh(vh) :=
{
γ|vh|21 + 1

τk
|[Lσ(Uk−1

σ )]
1
2∇Ĝh

σ,Uk−1
σ

(vh −Uk−1
σ )|20

+ 2 (Ψ1(vh), 1)h − (A−vh,vh)h − 2 (A+Uk−1
σ ,vh)h

}
. (2.31)
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As Eh(·) is strictly convex on Kh
m, which is convex and non-empty, Eh(·) has a unique minimum Uk

σ ∈ Kh
m.

Moreover, Uk
σ is the unique solution of (2.29) with χ ∈Kh

m. Existence of the Lagrange multipliers Ξkσ ∈ Sh and
Λk
σ ∈M(0), for fixed k, in (2.29) then follow from standard optimisation theory, see e.g. Ciarlet [14, Th. 9.2-3].

Therefore on noting (2.28), we have existence of a solution {Uk
σ,W

k
σ}Kk=1 to (Ph,τ

σ ). We cannot guarantee the
uniqueness of the Lagrange multipliers Ξkσ, Λk

σ and hence also of W k
σ. However if Ukσ,n(xj) > 0, then choosing

χ ≡ Uk
σ ± 1

2U
k
σ,n(xj)βj en in (2.10b) yields the desired uniqueness result for the W k

σ,n(xj).
We now prove the stability bound (2.30). For fixed k ≥ 1 choosing χ ≡W k

σ in (2.10a), χ ≡ Uk−1
σ in (2.10b)

and combining yields that

γ
2 |U

k
σ|21 + γ

2 |U
k
σ −Uk−1

σ |21 − γ
2 |U

k−1
σ |21 + (Ψ(Uk

σ), 1)h − (Ψ(Uk−1
σ ), 1)h

+ 1
2 ((A+ −A−)(Uk

σ −Uk−1
σ ),Uk

σ −Uk−1
σ )h + τk |[Lσ(Uk−1

σ )]
1
2∇W k

σ|20
≤ γ(∇Uk

σ,∇(Uk
σ −Uk−1

σ )) + τk |[Lσ(Uk−1
σ )]

1
2∇W k

σ|20
+ (Dψ1(Uk

σ)−A−Uk
σ −A+Uk−1

σ ,Uk
σ −Uk−1

σ )h ≤ 0 ; (2.32)

where we have noted the convexity of ψ1, (2.3) and the following identity for symmetric N ×N matrices B

−2(ζ − η)TBη ≡ ηTBη − ζTBζ + (ζ − η)TB(ζ − η) ∀ ζ, η ∈ RN . (2.33)

Summing (2.32) from k = 1 → m, for m = 1 → K, and noting the properties of Ψ, (1.18) and
∫
− Uk

σ =
∫
− u0

yields the first three bounds in (2.30). Choosing χ ≡ Ĝh(U
k
σ−Uk−1

σ

τk
) in (2.10a) and noting (2.22) and (2.9) yields

for k ≥ 1 that

|Ĝh(U
k
σ−Uk−1

σ

τk
)|21 = (U

k
σ−Uk−1

σ

τk
, Ĝh(U

k
σ−Uk−1

σ

τk
) )h

= − (Lσ(Uk−1
σ )∇W k

σ,∇Ĝh(U
k
σ−Uk−1

σ

τk
) )

≤ |[Lσ(Uk−1
σ )]∇W k

σ|20 ≤ Lσmax|[Lσ(Uk−1
σ )]

1
2∇W k

σ|20. (2.34)

Summing (2.34) from k = 1 → K and noting the third bound in (2.30) yields the desired fourth bound
in (2.30). ut

Remark 2.1. As can be seen from (2.32), γ2 | · |21 + (Ψ( · ), 1)h has the property that it is a Lyapunov functional
for the discrete evolution of the approximation (Ph,τσ ).

Instead of (Ph,τσ ) one could consider the corresponding non-regularised approximation of (P):
(Ph,τ) For k ≥ 1, find {Uk,W k} ∈Kh × Sh such that

(
Uk−Uk−1

τk
,χ
)h

+
(
L(Uk−1)∇W k,∇χ

)
= 0 ∀ χ ∈ Sh, (2.35a)

γ(∇Uk,∇(χ−Uk)) + (DΨ1(Uk)−A−Uk −W k,χ−Uk)h ≥ (A+Uk−1,χ−Uk)h ∀ χ ∈Kh; (2.35b)

where U0 ∈ Kh
m is an approximation of u0 ∈ Km, e.g. U0 ≡ Qh

2u
0. Unfortunately, we are not able to prove

existence of a solution {Uk,W k}Kk=1 to (Ph,τ ). Given Uk−1; then one approach is to replace L by Lσ in (2.35a)
and demonstrate the existence of a solution {Uk,σ,W k,σ}, which is bounded independently of σ, as for (Ph,τσ ).
However, we are not able to show that the σ′ → 0 limit of a convergent subsequence {Uk,σ′ ,W k,σ′}σ′>0 solves
(Ph,τ ).
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An alternative approach is to consider the well-posedness of the non-regularised version of (2.26). To do
this we try to extend the argument for the scalar Cahn-Hilliard equation with degenerate mobility in Barrett
et al. [8] to the present multi-component case. Firstly, we introduce some notation. Given qh ∈Kh

m, we define
for each component qhn, n = 1→ N , a set of passive nodes J0(qhn) ⊂ J by

j ∈ J0(qhn)⇐⇒ (Lnn(qh), βj) = 0⇐⇒ qhn ≡ 0 or 1 on supp(βj); (2.36)

where the second equivalence above follows immediately from (1.6). All other nodes we call active nodes for
qhn and they can be uniquely partitioned so that J+(qhn) := J \ J0(qhn) ≡

⋃Mn

m=1 Im(qhn), Mn ≥ 1; where Im(qhn),
m = 1 → Mn, are mutually disjoint and maximally connected in the following sense: Im(qhn) is said to be
connected if for all j, k ∈ Im(qhn), there exist {κ`}L`=1 ⊆ T h, not necessarily distinct, such that

(a) xj ∈ κ1, xk ∈ κL,
(b) κ` ∩ κ`+1 6= ∅ ` = 1→ L− 1,
(c) Lnn(qh) 6≡ 0 on κ` ` = 1→ L.

(2.37)

Im(qhn) is said to be maximally connected if there is no other connected subset of J+(qhn), which contains Im(qhn).
Clearly J+(qhn) is non-empty, since if (Lnn(qh), βj) = 0 ∀ j ∈ J then Lnn(qh) ≡ 0 a.e. and since qh ∈ Kh

m

it follows that qhn ≡ 0 or 1 and hence either {m}n ≡
∫
− qhn = 0 or 1, so one or more components of u are not

present, in which case the system can be modelled with a smaller value of N .
In addition we note that if j ∈ Im1(qhn1

), then j ∈ Im2(qhn2
) for some n2 6= n1 and some m2. We then set

V h(qhn) := { vh ∈ Sh : vh(xj) = 0 ∀ j ∈ J0(qhn) and (vh,∆m(qhn))h = 0, m = 1→Mn }, (2.38)

where for m = 1→Mn

∆m(qhn) :=
∑

j∈Im(qhn)

βj . (2.39)

For later use, we set

Ωm(qhn) := {
⋃
κ∈T h

κ : ∆m(qhn)(x) = 1 for all x ∈ κ }. (2.40)

An immediate consequence of the above definitions is that on any κ ∈ T h and for any n

either Lnj(qh) ≡ 0 j = 1→ N

or ∆m?(qhn) ≡ 1 for some m? and ∆m(qhn) ≡ 0 for m 6= m?. (2.41)

Finally, we introduce

V h(qh) := V h(qh1 )× V h(qh2 )× · · · × V h(qhn), (2.42a)

V̂ h(qh) := { vh ∈ V h(qh) : vh(xj) ∈ M(0) ∀ j ∈ J }. (2.42b)

We are now ready to introduce the following degenerate version of (2.26): given qh ∈Kh
m, Ĝh

qh : V̂ h(qh)→
V̂ h (qh) is defined by

(L(qh)∇Ĝh
qhv

h,∇χ) = (vh,χ)h ∀ χ ∈ Sh. (2.43)
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In order to show the well-posedness of Ĝh
qh we first note that on choosing χ ≡ βj e

n, for any j ∈ J0(qhn),
in (2.43) leads to both sides vanishing on noting (2.36), (2.42a,b) and (2.38). Secondly, choosing χ ≡ ∆m(qhn)en,
m = 1→Mn, n = 1→ N , in (2.43) leads to both sides vanishing on noting (2.41), (2.42a,b) and (2.38). Thirdly,
choosing χ ≡ βj 1, ∀ j ∈ J , in (2.43) leads to both sides vanishing on noting (1.14a) and (2.42b). Therefore for
the well-posedness of Ĝh

qh , it remains to prove uniqueness, as V̂ h(qh) has finite dimension. If there exist two
solutions Zi ∈ V̂ h(qh), i = 1, 2, to (2.43) then Zd := Z1 −Z2 ∈ V̂ h (qh) satisfies on noting (1.14b) and (1.13)∫

Ω

qhn q
h
p |∇(Zdn − Zdp )|2 dx = 0 n, p = 1→ N. (2.44)

Hence it follows from (2.44), (2.41), (2.39) and (2.40) that Zd ∈ V̂ h(qh) is such that

Zdn1
− Zdn2

is constant on Ωm1(qhn1
) ∩ Ωm2(qhn2

)
m1 = 1→Mn1 , m2 = 1→Mn2 ; n1, n2 = 1→ N. (2.45)

Unfortunately, we are not able to conclude from (2.45) that Zd ≡ 0 and hence the well-posedness of Ĝh
qh . If

we could establish the well-posedness of Ĝh
qh , then it follows from (2.35a) and (2.43) that for k ≥ 1, given

Uk−1 ∈Kh
m, we seek Uk ∈Kh(Uk−1), where

Kh(Uk−1) := {χ ∈Kh : χ−Uk−1 ∈ V̂ h(Uk−1) } ⊂Kh
m. (2.46)

On introducing

Y hn := span{ {∆m(qhn) }Mn
m=1, { βj }j∈Jh0 (qhn) }, (2.47a)

Y h := Y h1 × Y h2 × · · · Y hN , (2.47b)

Ŷ h := {yh ∈ Y h : yh(xj) ∈ M(0) ∀ j ∈ J }; (2.47c)

then a solution W k in (2.35a,b) could be expressed in terms of Uk as (cf. (2.43) and (2.42a,b))

W k ≡ −Ĝh
Uk−1(U

k−Uk−1

τk
) + Ξk1 + Λk, (2.48)

where Ξk ∈ Sh and Λk ∈ Ŷ h . Hence (Ph,τ ) could then be restated as:
For k ≥ 1, find {Uk,Ξk,Λk} ∈Kh(Uk−1)× Sh × Ŷ h such that

γ(∇Uk,∇(χ−Uk)) + (DΨ1(Uk)−A−Uk + Ĝh
Uk−1(U

k−Uk−1

τk
),χ−Uk)h

≥ (Ξk1 + Λk +A+Uk−1,χ−Uk)h ∀ χ ∈Kh. (2.49)

By considering the associated minimization problem, (2.31) with Kh
m replaced by Kh(Uk−1) and the σ su-

perscripts/subscripts removed, the existence of a solution {Uk,Ξk,Λk} to (2.49) is then easily established and
hence, on noting (2.48), existence of a solution {Uk,W k} to (Ph,τ ) at time level tk.

Therefore if one could show that (2.45) =⇒ Zd ≡ 0, then existence of a solution {Uk,W k}Kk=1 to (Ph,τ )
immediately follows. As stated above, unfortunately we have not been able to prove that (2.45) =⇒ Zd ≡ 0;
except for the case N = 2 when (P) collapses to the scalar Cahn-Hilliard equation with degenerate mobility
studied in Barrett et al. [8]. However, we know of no counterexamples. We note that if we assume the existence
of a solution {Uk,W k}Kk=1 to (Ph,τ); then it is a simple matter to check that the corresponding uniqueness
and stability results of Theorem 2.1, the σ superscripts and subscripts removed, hold. In practice we have
not experienced any difficulty in computing with the approximation (Ph,τ ), see the numerical experiments in
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Section 5. Below we establish the convergence in one space dimension (d = 1) of the regularised approximation
(Ph,τσ ) as h, τ and σ → 0; and of the approximation (Ph,τ ), on assuming existence, as h and τ → 0. Below we
adopt the notation ·(σ), which is an abbreviation for either “with” or “without”the subscript σ; similarly for
superscripts.

Let

U (σ)(t) :=
t− tk−1

τk
Uk

(σ) +
tk − t
τk

Uk−1
(σ) t ∈ [tk−1, tk] k ≥ 1 (2.50a)

and

U+
(σ)(t) := Uk

(σ), U−(σ)(t) := Uk−1
(σ) t ∈ (tk−1, tk] k ≥ 1. (2.50b)

We note for future reference that

U (σ) −U±(σ) = (t− t±k ) ∂∂tU (σ) t ∈ (tk−1, tk) k ≥ 1, (2.51)

where t+k := tk and t−k := tk−1. We introduce also

τ(t) := τk t ∈ (tk−1, tk] k ≥ 1. (2.52)

Using the above notation and introducing analogous notation for W (σ); (Ph,τ(σ)) can be restated as:

Find {U (σ),W (σ)} ∈ H1(0, T ;Kh)× L2(0, T ;Sh) such that∫ T

0

[ (
∂
∂tU (σ),χ

)h
+
(
L(σ)(U−(σ))∇W

+
(σ),∇χ

) ]
dt = 0 ∀ χ ∈ L2(0, T ;Sh), (2.53a)∫ T

0

[
γ(∇U+

(σ),∇(χ−U+
(σ))) + (DΨ1(U+

(σ))−A
−U+

(σ),χ−U
+
(σ))

h
]

dt

≥
∫ T

0

(A+U−(σ) +W+
(σ),χ−U

+
(σ))

h dt ∀ χ ∈ L2(0, T ;Kh). (2.53b)

Theorem 2.2. Let ψ1 ∈ C1([0, 1]) be convex and L(σ) satisfy (1.6), (1.13) and (2.4a,b). Let d = 1 and
u0 ∈Km. Let { T h,U0

(σ), τ (, σ) }h>0 be such that
i) U0

(σ) ∈Kh
m and U0

(σ) → u0 in H1(Ω) as h→ 0,
ii) Ω and {T h}h>0 fulfill assumption (A),
iii) τ (, σ)→ 0 as h→ 0.
Then there exists a subsequence of {U (σ),W (σ)}h, assuming the existence of a solution in the case of (Ph,τ ),

and a vector function u ∈ L∞(0, T ;Km) ∩ H1(0, T ; (H1(Ω))′) ∩ C
1
2 ,

1
8

x,t (ΩT ) and functions znp ∈ L2
loc({ un >

0 } ∩ { up > 0 }), n, p = 1→ N with ∂
∂xznp ∈ L2

loc({ un > 0 } ∩ { up > 0 }) such that as h→ 0

U (σ), U
±
(σ) → u uniformly on ΩT , (2.54)

U (σ), U
±
(σ) → u weakly in L2(0, T ;H1(Ω)), (2.55)

W+
(σ,)n −W

+
(σ,) p → znp,

∂

∂x
(W+

(σ,)n −W
+
(σ,) p)→

∂

∂x
znp weakly in L2

loc({ un > 0 } ∩ { up > 0 }),

n, p = 1→ N ; (2.56)

where {un > 0} := {(x, t) ∈ ΩT : un(x, t) > 0 }.
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Furthermore u and znp, n, p = 1→ N , fulfill u(·, 0) = u0(·) and∫ T

0

〈 ∂∂tun, η〉dt−
N∑
p=1

∫
{un>0 }∩{ up>0 }

Lnp(u) ∂
∂xznp

∂
∂xη dxdt = 0

∀ η ∈ L2(0, T ;H1(Ω)), n = 1→ N ; (2.57a)∫
{un>0 }∩{ up>0 }

[
( [ψ′1(un)− ψ′1(up) ]− [ {Au}n − {Au }p ]− znp) η + γ ∂

∂x (un − up) ∂
∂xη

]
dxdt = 0

∀ η ∈ L2(0, T ;H1(Ω)) with supp(η) ⊂ { un > 0 } ∩ { up > 0 }, n, p = 1→ N. (2.57b)

The latter immediately implies that

znp = −γ ∂2

∂x2 (un − up) + [ψ′1(un)− ψ′1(up) ]− [ {Au}n − {Au}p ]
on the set { un > 0 } ∩ { up > 0 }, n, p = 1→ N.

Proof. Noting the definition (2.50a,b), (2.52), (2.30) and it’s non-regularised counterpart, (2.25), assumptions
i)–iii), (1.18) together with the fact that U (±)

(σ) ∈K
h
m imply

‖U (σ)‖2L∞(0,T ;H1(Ω)) + ‖ τ 1
2 ∂
∂tU (σ)‖2L2(0,T ;H1(Ω))

+ ‖U (σ)‖2H1(0,T ;(H1(Ω))′) + ‖[L(σ)(U−(σ))]
1
2
∂

∂x
W+

(σ)‖
2
L2(ΩT )

≤ C. (2.58)

Furthermore, we deduce from (2.51), (2.52) and (2.58) that

‖U (σ) −U±(σ)‖
2
L2(0,T ;H1(Ω)) ≤ ‖ τ ∂

∂tU (σ)‖2L2(0,T ;H1(Ω)) ≤ C τ. (2.59)

In the next step we show that the discrete solutions U (σ) are uniformly Hölder continuous. The first bound
in (2.58) gives via a standard embedding result

|U (σ)(y2, t)−U (σ)(y1, t)| ≤ C |y2 − y1|
1
2 ∀ y1, y2 ∈ Ω, ∀ t ≥ 0. (2.60)

In addition it follows from (1.16), (2.15), (2.27), (2.58) and (2.30) that∥∥U (σ)(·, tb)−U (σ)(·, ta)
∥∥

0,∞ ≤ C
∥∥U (σ)(·, tb)−U (σ)(·, ta)

∥∥ 1
2
0

∥∥U (σ)(·, tb)−U (σ)(·, ta)
∥∥ 1

2
1

≤ C |Ĝh
(
U (σ)(·, tb)−U (σ)(·, ta)

)
|
1
4
1 ‖U (σ)(·, tb)−U (σ)(·, ta)‖

3
4
1

≤ C

∣∣∣∣ Ĝh

[∫ tb

ta

∂
∂tU (σ)(·, t) dt

] ∣∣∣∣
1
4

1

(
2
∥∥U (σ)

∥∥
L∞(0,T ;H1(Ω))

) 3
4

≤ C

∣∣∣∣ ∫ tb

ta

Ĝh ∂
∂tU (σ)(·, t) dt

∣∣∣∣
1
4

1

≤ C(tb − ta)
1
8

(∫ tb

ta

|Ĝh ∂
∂tU (σ)|21 dt

) 1
8

≤ C(tb − ta)
1
8 ∀ tb ≥ ta ≥ 0. (2.61)

An immediate consequence of (2.61) is that

‖U (σ) −U±(σ)‖L∞(ΩT ) ≤ C τ
1
8 . (2.62)
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Now (2.58), (2.60) and (2.61) imply that the C
1
2 ,

1
8

x,t (ΩT ) norm of U (σ) is bounded independently of h, τ , σ
and T . Hence, under the stated assumptions on τ (, σ), every sequence {U (σ)}h is uniformly bounded and
equicontinuous on ΩT , for any T > 0. Therefore by the Arzelà-Ascoli theorem there exists a subsequence such
that

U (σ) → u ∈ C
1
2 ,

1
8

x,t (ΩT ) uniformly on ΩT as h→ 0 (2.63)

and u(·, t) ∈Km. Moreover (2.58) implies that this same subsequence is such that

U (σ) → u weakly in L2(0, T ;H1(Ω)) as h→ 0. (2.64)

For any η ∈ H1(0, T ;H1(Ω)) we choose χ ≡ πhη in (2.53a) and now analyse the subsequent terms. Firstly, we
have that∫ T

0

(
∂
∂tU (σ),π

hη
)h

dt = −
∫ T

0

(
U (σ),

∂
∂t (π

hη)
)h

dt+
(
U (σ)(·, T ),πhη(·, T )

)h − (U (σ)(·, 0),πhη(·, 0)
)h
.

(2.65)

Next we conclude using the regularity of η, (2.19) and (2.63) that∫ T

0

(
U (σ),

∂
∂t (π

hη)
)h

dt→
∫ T

0

(
u, ∂∂tη

)
dt as h→ 0 for all η as above. (2.66)

The bound (2.58) on W+
(σ) does not lead to the control of W+

(σ), n on compact subsets of { un > 0 }, n = 1→ N ,
but only to the control of W+

(σ), n −W
+
(σ), p on compact subsets of { un > 0 } ∩ { up > 0 }, n, p = 1 → N ;

see (1.14b) and (2.5b). To do this, firstly we note that (1.14a) implies for all η ∈ L2(0, T ;H1(Ω)) that

∫
ΩT

L(σ)(U−(σ))
∂
∂xW

+
(σ)

∂
∂xη dxdt ≡ −

N∑
n=1

N∑
p=1

∫
ΩT

L(σ)
np (U−(σ))

∂
∂xZ

+
(σ,)np

∂
∂xηn dxdt ; (2.67)

where for notational convenience we have set

Z+
(σ,)np := W+

(σ,)n −W
+
(σ,) p n, p = 1→ N. (2.68)

In view of (1.14b), (2.5b), (2.58), (1.6), (1.13), (2.4a,b) and U−(σ) ∈ K
h
m we deduce for n, p = 1 → N , n 6= p,

that ∫
ΩT

∣∣∣L(σ)
np (U−(σ))

∂
∂xZ

+
(σ,)np

∂
∂x (I − πh)ηn

∣∣∣ dxdt

≤ ‖ [−L(σ)
np (U−(σ))]

1
2 ∂
∂xZ

+
(σ,)np‖L2(ΩT ) ‖ [−L(σ)

np (U−(σ))]
1
2 ∂
∂x (I − πh)ηn‖L2(ΩT )

≤ C ‖(I − πh)ηn‖L2(0,T ;H1(Ω)) ∀ ηn ∈ L2(0, T ;H1(Ω)). (2.69)

For any δ > 0, we then set for n = 1→ n

D+
δ,n := { (x, t) ∈ ΩT : un(x, t) > δ }

and D+
δ,n(t) := { x ∈ Ω : un(x, t) > δ }. (2.70)
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For a fixed δ > 0, it follows from (2.63) and (2.62) that there exists a h0(δ) ∈ R+ such that for n = 1→ N and
for all h ≤ h0(δ)

0 ≤ U±(σ,)n(x, t) ≤ 2 δ ∀ (x, t) 6∈ D+
δ,n

and 1
8 δ1 ≤ U

±
(σ,)n(x, t) ∀ (x, t) ∈ D+

δ1
4 ,n

δ1 = δ or 2 δ. (2.71)

By choosing h0(δ) small enough, we can assume also, without loss of generality from assumption iii), in the case
of (Ph,τσ ) that σ(h) ≤ δ for all h ≤ h0(δ). On noting (1.14b), (2.5b), (2.58), (1.6), (1.13), (2.4a,b), and (2.71)
we have for n, p = 1→ N , n 6= p, and for all h ≤ h0(δ) that∣∣∣∣∣
∫

ΩT \(D+
δ,n∩D

+
δ,p)

L(σ)
np (U−(σ))

∂
∂xZ

+
(σ,)np

∂
∂xηn dxdt

∣∣∣∣∣ ≤ ‖[−L(σ)
np (U−(σ))]

1
2 ‖L∞(ΩT \(D+

δ,n∩D
+
δ,p))

× ‖[−L(σ)
np (U−(σ))]

1
2 ∂
∂xZ

+
(σ,)np‖L2(ΩT ) ‖ηn‖L2(0,T ;H1(Ω))

≤ C δ
1
2 ‖ηn‖L2(0,T ;H1(Ω)) ∀ ηn ∈ L2(0, T ;H1(Ω))

(2.72)

and

C δ2

∫
D+
δ
2 ,n
∩D+

δ
2 ,p

( ∂
∂xZ

+
(σ,)np)

2 dxdt ≤
∫
D+
δ
2 ,n
∩D+

δ
2 ,p

[−L(σ)
np (U−(σ))] ( ∂

∂xZ
+
(σ,)np)

2 dxdt ≤ C. (2.73)

In what follows we want to relate Z+
(σ,)np to U±(σ,)n and U±(σ,) p on the sets D+

δ,n ∩D+
δ,p. From (2.71) we have for

all h ≤ h0(δ) and for a.e. t ∈ (0, T ) that

χ(·, t) ≡ U+
(σ)(·, t)± 1

8δ
ηh(·, t)
‖ηh(·, t)‖0,∞

en ∈Kh

∀ ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ
4 ,n
, n = 1→ N. (2.74)

Choosing such χ in (2.53b) yields for n = 1→ N and for all h ≤ h0(δ) that∫ T

0

[
γ( ∂

∂xU
+
(σ,)n,

∂
∂xη

h) + (ψ′1(U+
(σ,)n)− {A−U+

(σ) +A+U−(σ) }n, ηh)h − (W+
(σ,)n, η

h)h
]

dt = 0

∀ ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ
4 ,n
. (2.75)

Hence from (2.75), it follows for n, p = 1→ N and for all h ≤ h0(δ) that∫ T

0

[
γ( ∂

∂x(U+
(σ,)n − U

+
(σ,) p),

∂
∂xη

h) + ( [ψ′1(U+
(σ,)n)− ψ′1(U+

(σ,) p) ], ηh)h

− ( [ {A−U+
(σ) +A+U−(σ) }n − {A

−U+
(σ) +A+U−(σ) }p ] + Z+

(σ,)np, η
h)h

]
dt = 0

∀ ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ
4 ,n
∩D+

δ
4 ,p
. (2.76)

For any t ∈ [0, T ] and for n = 1→ N , we choose a cut-off function αδ,n(·, t) ∈ C∞(Ω) such that

αδ,n(·, t) ≡ 1 on D+
δ,n(t), 0 ≤ αδ,n(·, t) ≤ 1 on D+

δ
2 ,n

(t) \D+
δ,n(t),

αδ,n(·, t) ≡ 0 on Ω \D+
δ
2 ,n

(t) and | ∂∂xαδ,n(·, t)| ≤ C δ−2. (2.77)
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This last property can be achieved since for y1, y2 ∈ Ω such that un(y1, t) = 1
2δ and un(y2, t) = δ we have

from (2.63) that 1
2δ = |un(y2, t)− un(y1, t)| ≤ C|y2 − y1|

1
2 . It follows from (2.21) and (2.77) that there exists a

h1(δ) ≤ h0(δ) such that for n, p = 1→ N , n 6= p,

supp(Qh2 [α2
δ,npZ

+
(σ,)np ]) ⊂ D+

δ
4 ,n
∩D+

δ
4 ,p

∀ h ≤ h1(δ); (2.78)

where αδ,np := αδ,n αδ,p. It then follows from (2.2), (2.78), (2.75), (2.20), ψ1 ∈ C1([0, 1]), U (σ) ∈Kh
m and (2.77)

that for n 6= p and for all h ≤ h1(δ)∫
ΩT

α2
δ,np (Z+

(σ,)np)
2 dxdt =

∫ T

0

(
Z+

(σ,)np, Q
h
2 [α2

δ,np Z
+
(σ,)np ]

)h
dt

=
∫ T

0

[
γ
(
∂
∂x (U+

(σ,)n − U
+
(σ,)p),

∂
∂xQ

h
2 [α2

δ,np Z
+
(σ,)np ]

)
−
(

[ {A−U+
(σ) +A+U−(σ) }n − {A

−U+
(σ) +A+U−(σ) }p ], Qh2 [α2

δ,np Z
+
(σ,)np ]

)h
+
(

[ψ′1(U+
(σ,)n)− ψ′1(U+

(σ,) p) ], Qh2 [α2
δ,np Z

+
(σ,)np ]

)h ]
dt

≤ C ‖U+
(σ)‖L2(0,T ;H1(Ω)) ‖ ∂∂x (α2

δ,np Z
+
(σ,)np)‖L2(ΩT ) + C ‖αδ,npZ+

(σ,)np‖L2(ΩT )

≤ C(δ−1)
(
‖U+

(σ)‖L2(0,T ;H1(Ω)) + 1
)

×
[
‖ ∂∂xZ

+
(σ,)np‖L2(D+

δ
2 ,n
∩D+

δ
2 ,p

) + ‖αδ,npZ+
(σ,)np‖L2(ΩT )

]
. (2.79)

Applying Young’s inequality then gives∫
ΩT

α2
δ,np (Z+

(σ,)np)
2 dxdt ≤ C(δ−1)

[
1 + ‖U+

(σ)‖
2
L2(0,T ;H1(Ω)) + ‖ ∂∂xZ

+
(σ,)np‖2L2(D+

δ
2 ,n
∩D+

δ
2 ,p

)

]
. (2.80)

Therefore combining (2.73), (2.80) and (2.58) we have for n, p = 1→ N , n 6= p, that

‖Z+
(σ,)np‖L2(0,T ;H1(D+

δ,n(t)∩D+
δ,p(t))) ≤ C(δ−1) ∀ h ≤ h1(δ). (2.81)

This implies the existence of a subsequence and znp ∈ L2(0, T ;H1(D+
δ,n(t) ∩D+

δ,p(t))) such that

Z+
(σ,)np → znp,

∂
∂xZ

+
(σ,)np →

∂
∂xznp weakly in L2(D+

δ,n ∩D+
δ,p) as h→ 0

n, p = 1→ N, n 6= p. (2.82)

Next it follows from (2.73), (1.6), (1.13), (2.4a,b), u(·, t) ∈ Km and U (σ)(·, t) ∈ Kh
m that for n, p = 1 → N ,

n 6= p, ∣∣∣∣∣
∫
D+
δ,n∩D

+
δ,p

[
L(σ)
np (U−(σ))− Lnp(u)

]
∂
∂xZ

+
(σ,)np

∂
∂xηn dxdt

∣∣∣∣∣
≤ ‖Lnp(u)− L(σ)

np (U−(σ))‖L∞(ΩT ) ‖ ∂∂xZ
+
(σ,)np‖L2(D+

δ,n
∩D+

δ,p
) ‖ηn‖L2(0,T ;H1(Ω))

≤ C(δ−1) ‖ηn‖L2(0,T ;H1(Ω))

N∑
m=1

‖lm(um)− l(σ)
m (U−(σ,)m)‖L∞(ΩT ); (2.83)
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which will converge to 0 as h→ 0 on noting (2.63), (2.62), assumption iii) and that lm ∈ C([0, 1]), m = 1→ N .
Combining (2.69), (2.83) and (2.82) and noting (2.18), (2.63) and (2.62) yields for n, p = 1→ N , n 6= p, and

for all ηn ∈ L2(0, T ;H1(Ω)) that∫
D+
δ,n
∩D+

δ,p

L(σ)
np (U−(σ))

∂
∂xZ

+
(σ,)np

∂
∂x (πhηn) dxdt→

∫
D+
δ,n
∩D+

δ,p

Lnp(u) ∂
∂xznp

∂
∂xηn dxdt as h→ 0. (2.84)

Moreover, by (2.18), (2.64), (2.59) and assumption iii) we have for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

( ∂
∂xU

+
(σ),

∂
∂x (πhη)) dt→

∫ T

0

( ∂
∂xu,

∂
∂xη) dt as h→ 0. (2.85)

Using (2.1), (2.17) and (2.81) we deduce for n, p = 1→ N , n 6= p, that∣∣∣∣∣
∫ T

0

[
(Z+

(σ,)np, π
hηn)h − (Z+

(σ,)np, ηn)
]

dt

∣∣∣∣∣ ≡
∣∣∣∣∫

ΩT

(I − πh)(Z+
(σ,)np ηn) dxdt

∣∣∣∣
≤ Ch

∫
ΩT

| ∂∂x (Z+
(σ,)np ηn)|dxdt

≤ Ch ‖Z+
(σ,)np‖L2(0,T ;H1(D+

δ,n(t)∩D+
δ,p(t))) ‖ηn‖L2(0,T ;H1(Ω))

≤ C(δ−1)h ‖ηn‖L2(0,T ;H1(Ω))

∀ ηn ∈ L2(0, T ;H1(Ω)) with supp(ηn) ⊂ D+
δ,n ∩D

+
δ,p. (2.86)

Noting that ψ1 ∈ C1([0, 1]) and using (2.1), (2.17), (2.54), (2.19) and (2.13) yields that∣∣∣∣∣
∫ T

0

[
(ψ′1(U+

(σ,)n), πhηn)h − (ψ′1(un), ηn)
]

dt

∣∣∣∣∣ ≤
∫ T

0

∣∣∣(ψ′1(U+
(σ,)n)− ψ′1(un), πhηn)h

∣∣∣ dt

+
∫ T

0

∣∣(ψ′1(un), πhηn)h − (ψ′1(un), ηn)
∣∣ dt→ 0 as h→ 0, ∀ ηn ∈ L2(0, T ;H1(Ω)). (2.87)

Using a similar argument for the remaining terms and combining (2.86), (2.82) and (2.87) implies for n, p =
1→ N , n 6= p, that∫ T

0

[ (
[ψ′1(U+

(σ,)n)− ψ′1(U+
(σ,) p) ]− Z+

(σ,)np, π
hηn
)h

−
(
{A−U+

(σ) +A+U−(σ) }n − {A
−U+

(σ) +A+U−(σ) }p , π
hηn
)h ]

dt

→
∫ T

0

[
( [ψ′1(un)− ψ′1(up) ]− znp − [ {Au }n − {Au}p ], ηn)h

]
dt

as h→ 0, ∀ ηn ∈ L2(0, T ;H1(Ω)) with supp(ηn) ⊂ D+
δ,n ∩D

+
δ,p. (2.88)

Combining (2.85) and (2.88) and noting (2.76) yields for n, p = 1→ N , n 6= p, that∫
D+
δ,n
∩D+

δ,p

[
( [ψ′1(un)− ψ′1(up) ]− [ {Au }n − {Au }p ]− znp) ηn + γ ∂

∂x(un − up) ∂
∂xηn

]
dxdt = 0

∀ ηn ∈ L2(0, T ;H1(Ω)) with supp(ηn) ⊂ D+
δ,n ∩D

+
δ,p. (2.89)



FINITE ELEMENT APPROXIMATION OF DEGENERATE CAHN-HILLIARD SYSTEMS 731

This uniquely defines znp in terms of u on the set D+
δ,n ∩D+

δ,p. Repeating (2.84) for all δ > 0 and noting (2.72)
and (2.18) yields for n, p = 1→ N , n 6= p, and for all ηn ∈ L2(0, T ;H1(Ω)) that

∫
ΩT

L(σ)
np (U−(σ))

∂
∂xZ

+
(σ,)np

∂
∂x(πhηn) dxdt→

∫
D+

0,n∩D
+
0,p

Lnp(u) ∂
∂xznp

∂
∂xηn dxdt as h→ 0. (2.90)

Combining (2.53a), (2.65), (2.66), (2.67), (2.90) and arguing similarly as in (2.87) by using (2.54), (2.19), (2.13)
and assumption i) we conclude for all η ∈ H1(0, T ;H1(Ω)) that

(u(·, T ),η(·, T ))− (u0(·),η(·, 0))−
∫ T

0

(u, ∂∂tη) dt−
N∑
n=1

N∑
p=1

∫
D+

0,n∩D
+
0,p

Lnp(u) ∂
∂xznp

∂
∂xηn dxdt = 0. (2.91)

In the above we have also noted that (2.56) implies that znn ≡ 0 on ΩT , n = 1→ N .
As

{
[−L(σ)

np (U−(σ))]
1
2 ∂
∂xZ

+
(σ,)np

}
h>0

is uniformly bounded in L2(ΩT ), n 6= p, see (2.72); it follows from

the above that [−Lnp(u)]
1
2 ∂
∂xznp ∈ L2(D+

0,n ∩ D+
0,p), n 6= p. Hence we conclude from (2.91) that u ∈

H1(0, T ; (H1(Ω))′). Therefore combining the above results, repeating (2.89) for all δ > 0 yields that

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′)∩C
1
2 ,

1
8

x,t (ΩT ) and znp ∈ L2
loc(D

+
0,n ∩D+

0,p), with ∂
∂xznp ∈ L2

loc(D
+
0,n ∩

D+
0,p), n, p = 1→ N , are such that u(·, 0) = u0(·) and

∫ T

0

〈 ∂∂tun, ηn〉dt−
N∑
p=1

∫
D+

0,n∩D
+
0,p

Lnp(u) ∂
∂xznp

∂
∂xηn dxdt = 0

∀ ηn ∈ L2(0, T ;H1(Ω)), n = 1→ N ; (2.92a)∫
D+

0,n∩D
+
0,p

[
( [ψ′1(un)− ψ′1(up) ]− [ {Au }n − {Au }p ]− znp) ηn + γ ∂

∂x(un − up) ∂
∂xηn

]
dxdt = 0

∀ ηn ∈ L2(0, T ;H1(Ω)) with supp(ηn) ⊂ D+
0,n ∩D+

0,p, n, p = 1→ N. (2.92b)

Hence we have established the desired results (2.57a,b). ut
By modifying the mobility matrix Lσ in our approximation (Ph,τσ ) it is possible to ensure that the limit func-

tion u in Theorem 2.2 above is such that u ∈ L2(0, T ;H2(Ω)). This idea has been introduced in Zhornitskaya
and Bertozzi [30] and Grün and Rumpf [24] for the thin film equation

∂
∂tu+ ∂

∂x ( b(u) ∂
3

∂x3 u ) = 0,

where b(u) := |u|p for a given p ∈ (0,∞). We adapt their approach here to obtain a discrete version of the
required entropy bound in Elliott and Garcke [19, Lem. 10]. For any σ ∈ (0, 1), we introduce fσn , F

σ
n : [0, 1]→ R,

n = 1→ N , such that

fσn (s) := −
∫ 1

s

[lσn(r)]−1 dr, Fσn (s) := −
∫ 1

s

fσn (r) dr ∀ s ∈ [0, 1], (2.93)
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where lσn is defined by (2.4b). It follows immediately from the above definitions that for n = 1→ N

(Fσn )′(s) = fσn (s), (Fσn )′′(s) = (fσn )′(s) = [lσn(s)]−1 ∀ s ∈ [0, 1], (2.94a)

l−1
min(s ln s+ 1− s) ≥ Fσ1

n (s)
≥ Fσ2

n (s) ≥ 0 ∀ s ∈ [0, 1], ∀ σ2 > σ1 > 0, (2.94b)
σ−1(s2 − s1)2 ≥ ((Fσn )′(s2)− (Fσn )′(s1))(s2 − s1)

≥ (lmax + σ)−1(s2 − s1)2 ≥ 0 ∀ s2, s1 ∈ [0, 1]. (2.94c)

Hence Fσn is a nonnegative convex function.
Similarly to Zhornitskaya and Bertozzi [30] and Grün and Rumpf [24], we introduce l̂σn : Ŝh := {χ ∈ Sh :

χ(xj) ∈ [0, 1], ∀ j ∈ J } → L∞(Ω), n = 1 → N , which is piecewise constant on T h. In the case d = 1 given
qh ∈ Ŝh and κ ∈ T h having vertices xi and xj , we set

l̂σn(qh) |κ :=


qh(xi)− qh(xj)

(Fσn )′(qh(xi))− (Fσn )′(qh(xj))
≡ lσn(qh((1− µ)xi + µxj))

for some µ ∈ (0, 1) if qh(xi) 6= qh(xj),
lσn(qh(xj)) if qh(xi) = qh(xj).

. (2.95)

Clearly the piecewise constant construction in (2.95) has the property that for any σ ∈ (0, 1) and for n = 1→ N

l̂σn(qh) d
dxπ

h[(Fσn )′(qh)] = d
dxq

h a.e. in Ω, ∀ qh ∈ Ŝh. (2.96)

We then introduce the N ×N matrix L̂σ, where for all σ ∈ (0, 1) and qh ∈Kh
m

{L̂σ(qh)}np ≡ L̂σnp(qh) := l̂σn(qhn)
(
δnp −

(
1T l̂σ(qh)

)−1

l̂σp (qhp )
)

(2.97a)

and {̂lσ(qh)}n := l̂σn(qhn), n = 1→ N. (2.97b)

Similarly to (2.7), it follows that

Lσmin ‖η‖2 ≤ ηT L̂σ(qh(x))η ∀ qh ∈Kh
m, x ∈ Ω, η ∈M(0). (2.98)

We introduce also Fσ : [0, 1]N → R such that

Fσ(s) :=
N∑
n=1

Fσn (sn) ∀ s ∈ [0, 1]N . (2.99)

In addition we introduce the “discrete Laplacian” operator ∆h : Sh → Sh such that {∆hvh }n := ∆hvhn for all
vh ∈ Sh, where ∆h : Sh → Sh satisfies

(∆hvh, χ)h = − (∇vh,∇χ) ∀ χ ∈ Sh. (2.100)

Finally, we need a further restriction on the mesh. We modify our assumption (A) to

(Ã) In addition to the assumption (A), we assume for all h > 0 that T h is an acute partitioning; that is for
(i) d = 2 the angle of any triangle does not exceed π

2 , (ii) d = 3 the angle between any two faces of the
same tetrahedron does not exceed π

2 .
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This acuteness assumption yields that∫
κ

∇βi · ∇βj dx ≤ 0 i 6= j, ∀ κ ∈ T h. (2.101)

Theorem 2.3. We consider the approximation (Ph,τ
σ ) with the mobility matrix Lσ replaced by L̂σ. Then the

results of Theorems 2.1 and 2.2 remain true under their stated assumptions with Lσ replaced by L̂σ.
Furthermore, under the assumptions of Theorem 2.1 with (A) replaced by (Ã) it follows that

max
k=1→K

(Fσ(Uk
σ), 1)h +

K∑
k=1

γ τk |∆hUk
σ|2h ≤ (Fσ(U0

σ), 1)h + C σ−1 τ
1
2 [ |U0

σ|21 + 1 ] + C. (2.102)

Moreover, under the assumptions of Theorem 2.2 with the additional constraint that τ ≤ Cσ2 as h→ 0 we have
that the limit function u lies in L2(0, T ;H2(Ω)).

Proof. It is easily deduced from (2.97a,b) and (2.95) that the results of Theorems 2.1 and 2.2 remain true under
their stated assumptions with Lσ replaced by L̂σ.

Choosing χ ≡ πh[DFσ(Uk−1
σ )] in (2.10a), with Lσ replaced by L̂σ, and noting (2.97a), (2.99), (2.96) and

that Uk−1
σ ∈Kh

m yields

(
Ukσ−Uk−1

σ

τk
,DFσ(Uk−1

σ )
)h

= −
(
L̂σ(Uk−1

σ )∇W k
σ,∇

[
πhDFσ(Uk−1

σ )
])

= −
N∑
n=1

(
N∑
p=1

[
δnp −

blσp (Uk−1
σ,p )

1T bl
σ

(Uk−1
σ )

]
∇W k

σ,p, l̂
σ
n(Uk−1

σ,n )∇πh[(Fσn )′(Uk−1
σ,n ) ]

)

= −
N∑
n=1

(
N∑
p=1

[
δnp −

blσp (Uk−1
σ,p )

1T blσ(Uk−1
σ )

]
∇W k

σ,p, ∇Uk−1
σ,n

)

= −
N∑
n=1

(∇W k
σ,n,∇Uk−1

σ,n ). (2.103)

From (2.10b) we have for n = 1→ N that

γ (∇Ukσ,n,∇βj) + (ψ′1(Ukσ,n)− {A−Uk
σ}n + {A+Uk−1

σ }n, βj)h{
≥ (W k

σ,n, βj)
h ∀ j ∈ J,

= (W k
σ,n, βj)h if Ukσ,n(xj) > 0. (2.104)

From (2.100), (2.1) and (2.101) we have for n = 1→ N that

Ukσ,n(xj) = 0 =⇒ (1, βj)h (∆hUkσ,n)(xj) = (∆hUkσ,n, βj)
h = − (∇Ukσ,n,∇βj)

= −
∑
i∈J

Ukσ,n(xi)(∇βi,∇βj) ≥ 0. (2.105)

Combining (2.104) and (2.105) yields for n = 1→ N that

γ (∇Ukσ,n,∇(∆hUkσ,n) ) + (ψ′1(Ukσ,n)− {A−Uk
σ}n + {A+Uk−1

σ }n,∆hUkσ,n)h ≥ (W k
σ,n,∆

hUkσ,n)h. (2.106)
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From (2.100), (2.106) and as ψ1 ∈ C1[0, 1] and Uk
σ ∈Kh

m we have for n = 1→ N that

γ |∆hUkσ,n|2h = −γ (∇Ukσ,n,∇(∆hUkσ,n)) ≤ − (W k
σ,n,∆

hUkσ,n)h + C

= (∇W k
σ,n,∇Ukσ,n) + C. (2.107)

It follows from (2.103), (2.94a,c), (2.107), Uk
σ −Uk−1

σ ∈ V h, (2.98) and (2.97a) that

(Fσ(Uk
σ)− Fσ(Uk−1

σ ), 1)h + γ τk |∆hUk
σ|2h

≤ (Uk
σ −Uk−1

σ ,DFσ(Uk
σ) )h + τk [ (∇W k

σ,∇Uk
σ) + C ]

= (Uk
σ −Uk−1

σ ,DFσ(Uk
σ)−DFσ(Uk−1

σ ) )h + τk [ (∇(I − 1
∑
− )W k

σ,∇(Uk
σ −Uk−1

σ ) ) + C ]

≤ C σ−1 τ2
k |
Ukσ−Uk−1

σ

τk
|2h + C σ−1 τ2

k |[L̂σ(Uk−1
σ )]

1
2∇W k

σ|0 |
Ukσ−Uk−1

σ

τk
|1 + C τk. (2.108)

Next we note from (2.27) and the analogue of (2.30) for L̂σ(·) that

K∑
k=1

τ2
k |
Ukσ−Uk−1

σ

τk
|2h ≤

[
K∑
k=1

τ2
k

∣∣∣Ukσ−Uk−1
σ

τk

∣∣∣2
1

] 1
2
[

K∑
k=1

τ2
k

∣∣∣ Ĝh
[
Ukσ−Uk−1

σ

τk

] ∣∣∣2
1

] 1
2

≤ Cτ
1
2 [Lσmax]

1
2 [ |U0

σ|21 + 1 ]. (2.109)

Summing (2.108) from k = 1 → m, for m = 1 → K, and noting (2.30), with Lσ replaced by L̂σ, and (2.109)
yields the desired result (2.102).

Finally it follows from (2.102), τ ≤ C σ2, assumption i) of Theorem 2.2, (2.94b) and (2.50b) that

‖∆hU+
σ ‖2L2(ΩT ) ≤ C + (Fσ(U0

σ), 1)h ≤ C. (2.110)

From (2.110) it follows that there exists a Γ ∈ L2(ΩT ) such that

∆hU+
σ → Γ weakly in L2(ΩT ) as h→ 0. (2.111)

It follows (2.100) with χ ≡ πhη, (2.85), (2.16), (2.17) and (2.111) that∫ T

0

( ∂
∂xu,

∂
∂xη) dt = −

∫ T

0

(Γ,η) dt ∀ η ∈ L2(0, T ;H1(Ω)). (2.112)

The desired result u ∈ L2(0, T ;H2(Ω)) then follows from (2.112) as Γ ∈ L2(ΩT ). ut
Remark 2.2. Under the assumptions of Theorem 2.2, except that d ≥ 2, it still follows from (2.58) and (2.59)
that there exists a vector function u ∈ L∞(0, T ;Km) ∩H1(0, T ; (H1(Ω))′) such that as h→ 0

U (σ), U
±
(σ) → u weakly in L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′)

U (σ), U
±
(σ) → u strongly in L2(ΩT ). (2.113)

Moreover, with the mobility matrix Lσ replaced by L̂σ and under the additional assumptions (Ã) and the
additional constraint τ ≤ Cσ2 as h → 0 we have that (2.113) still hold for U (±)

σ with u ∈ L2(0, T ;H2(Ω)) if
d ≥ 2, see Theorem 2.3 above. However, like Grün and Rumpf [24], we are not able to show that u solves a
weak form of (P) if d ≥ 2.

We end this section by noting that in Barrett and Blowey [6] an optimal error bound is proved for the
approximation (Ph,τ ) in the case of a non-degenerate mobility matrix with strengthened assumptions on the
initial data u0.
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3. Solution of the discrete variational inequality

We now consider an algorithm for solving the variational inequality system at each time level in (Ph,τ). This
is a multi-component version of the algorithm introduced in Barrett et al. [8, Sect. 3] for the scalar Cahn-Hilliard
problem with degenerate mobility, which is based on the general splitting algorithm of Lions and Mercier [26].

Throughout this section, we adopt the notation:

χ := (I − 1
∑
− )χ ∀ χ ∈ Sh. (3.1)

Then for k fixed, multiplying (2.10b), (2.35b) by µ > 0, adding (Uk
(σ),χ−Uk

(σ))
h to both sides and rearranging

on noting (2.10a), (2.35a); it follows that {Uk
(σ),W

k
(σ)} ∈Kh

m × Sh satisfy

(Uk
(σ) + µDΨ1(Uk

(σ)),χ−Uk
(σ))

h ≥ (Rk,χ−Uk
(σ))

h ∀ χ ∈Kh, (3.2a)(
Uk(σ)−U

k−1
(σ)

τk
,χ

)h
+ L(σ)

max(∇W k

(σ),∇χ) = ([L(σ)
maxI − L(σ)(Uk−1

(σ) )]∇W k

(σ),∇χ) ∀ χ ∈ Sh; (3.2b)

where Rk ∈ Sh is such that

(Rk −Uk
(σ),χ)h := −µ

[
γ(∇Uk

(σ),∇χ)− (A−Uk
(σ) +A+Uk−1

(σ) +W k
(σ),χ)h

]
∀ χ ∈ Sh (3.2c)

and L(σ)
max ∈ R is as defined in (2.9). We introduce also Xk ∈ Sh such that

(Xk −Uk
(σ),χ)h := µ

[
γ(∇Uk

(σ),∇χ)− (A−Uk
(σ) +A+Uk−1

(σ) +W k
(σ),χ)h

]
∀ χ ∈ Sh (3.2d)

and note that Xk = 2Uk
(σ) −Rk. We use the above as a basis for constructing our iterative procedure:

For k ≥ 1 set {Uk,0,W k,0} ≡ {Uk−1
(σ) ,W

k−1
(σ) } ∈K

h
m × Sh, where W 0

(σ) ∈ Sh is arbitrary if k = 1.

For p ≥ 0 we define Rk,p ∈ Sh such that

(Rk,p −Uk,p,χ)h = − µ
[
γ(∇Uk,p,∇χ)− (A−Uk,p +A+Uk−1

(σ) +W k,p,χ)h
]
∀ χ ∈ Sh. (3.3a)

Then, on recalling the notation (2.36), find Uk,p+ 1
2 ∈Kh such that for n = 1→ N

U
k,p+ 1

2
n (xj) = Uk−1

(σ,)n(xj) if j ∈ J0(Uk−1
(σ,)n),

(Uk,p+
1
2

n (xj) + µψ′1(Uk,p+
1
2

n (xj))−Rk,pn (xj))(r − U
k,p+ 1

2
n (xj)) ≥ 0 ∀ r ≥ 0 if j ∈ J+(Uk−1

(σ,)n) (3.3b)

and find {Uk,p+1,W k,p+1} ∈ Sh × Sh such that

(
U
k,p+1 − Uk−1

(σ)

τk
,χ)h + L(σ)

max(∇W k,p+1
,∇χ) = ([L(σ)

maxI − L(σ)(Uk−1
(σ) )]∇W k,p

,∇χ) ∀ χ ∈ Sh, (3.3c)

(Uk,p+1,χ)h + µ
[
γ (∇Uk,p+1,∇χ)− (A−Uk,p+1 +W k,p+1,χ)h

]
= (Xk,p+1 + µA+Uk−1

(σ) ,χ)h ∀ χ ∈ Sh;
(3.3d)

where Xk,p+1 := 2Uk,p+ 1
2 −Rk,p. For j ∈ J+(Uk−1

(σ,)n) existence and uniqueness of Uk,j+
1
2

n (xj) in the variational
inequality (3.3b) follows from the monotonicity of ψ′1(·).
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It remains to show that there exists a unique solution to (3.3c,d). On noting (1.14a) and (2.5a), let Ek,p ∈ V h

be such that

(Ek,p,χ)h := (L(σ)(Uk−1
(σ) )∇W k,p,∇χ) ≡ (L(σ)(Uk−1

(σ) )∇W k,p
,∇χ) ∀ χ ∈ Sh. (3.4)

It then follows from (3.3c,d) and (2.22) that∑
−W k,p+1 = µ−1

(
N−1 −

∑
− Xk,p+1

)
−
∑
− (A−Uk,p+1 +A+Uk−1

(σ) ), (3.5a)

W
k,p+1

= (I −
∫
− )W

k,p − [L(σ)
max]−1Ĝh

(
Uk,p+1−Uk−1

(σ)

τk
+Ek,p

)
+
∫
−
[
µ−1(Uk,p+1 −Xk,p+1)−Am−

∑
− W k,p+11

]
. (3.5b)

Therefore (3.3c,d) may be written equivalently as:
Find Uk,p+1 ∈ Shm := {vh ∈ Sh :

∫
− vh =

∫
− U0, N

∑
− vh = 1} such that

(Uk,p+1, (I −
∫
− )χ)h + µ

[
γ(∇Uk,p+1,∇χ) +

(
[L(σ)

max]−1Ĝh (
Uk,p+1−Uk−1

(σ)

τk
)−A−Uk,p+1, (I −

∫
− )χ

)h ]
= (Bk,p+1, (I −

∫
− )χ)h ∀ χ ∈ Sh, (3.6a)

where Bk,p+1 := Xk,p+1 + µ
[
A+Uk−1

(σ) +W k,p − [L(σ)
max]−1ĜhEk,p

]
. (3.6b)

Existence and uniqueness of Uk,p+1 ∈ Shm satisfying (3.6a) follows since this is the Euler-Lagrange equation of
the strictly convex minimization problem

min
�∈Shm

{
|χ|2h + µ

[
γ|χ|21 + 1

L
(σ)
maxτk

|∇Ĝh(χ−Uk−1
(σ) )|20 − (A−χ,χ)h

]
− 2 (Bk,p+1,χ)h

}
·

Finally, existence and uniqueness of W k,p+1 then follows from (3.5a,b). Hence the iterative procedure (3.3a-d)
is well-defined. Moreover, at each iteration one needs to solve only (i) a fixed linear system with constant
coefficients and (ii) a decoupled nonlinear equation for each component at each mesh point. We briefly discuss
the solution of (i); that is, (3.6a). Introducing the J × N matrices Uk,p ≡ {Uk,pj,n } and Bk,p ≡ {Bk,pj,n} where
J := #J and

{Uk,p}n(x) ≡
J∑
j=1

Uk,pj,n βj(x), {Bk,p}n(x) ≡
J∑
j=1

Bk,pj,n βj(x) (3.7)

In addition, we introduce the N × N matrix L∗ := I − 1
N 1 1T and the J × J matrices K ≡ {Kj,j′} and

D ≡ {Dj,j′}, where

Kj,j′ := (∇βj ,∇βj′), Dj,j′ := (βj , βj′)h = ωj δjj′ . (3.8)

Using this notation, setting M≡ D−1K, noting that (L∗)T ≡ L∗ and L∗1 = 0, (3.6a) may be restated as find
Uk,p+1 ∈ RJ ,N such that

MUk,p+1L∗ + µ
[
γM2 Uk,p+1L∗ + [L(σ)

max]−1

τk
(Uk,p+1 − Uk−1)−MUk,p+1A−L∗

]
=MBk,p+1L∗. (3.9)

Systems of this type are easily solved using “the discrete cosine transform” when T h is a uniform partitioning,
see Barrett and Blowey [3, Sect. 4] for details.
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Theorem 3.1. For all µ ∈ R+ and {Uk,0,W k,0} ∈Kh
m × Sh the sequence {Uk,p,W k,p}p≥0 generated by the

algorithm (3.3a-d) satisfies

Uk,p → Uk
(σ) and

∫
Ω

L(σ)(Uk−1
(σ) )|∇(W k,p+1 −W k

(σ))|2 dx→ 0 as p→∞. (3.10)

In addition, if ψ′1(·) is strictly monotone then Uk,p+ 1
2 → Uk

(σ) as p→∞.

Proof. It follows from (3.2c,d), (3.3a,d) and by the definition of Xk,p+1 that for p ≥ 0

Uk
(σ) = 1

2 (Xk +Rk), Uk,p = 1
2 (Xk,p +Rk,p), Uk,p+ 1

2 = 1
2 (Xk,p+1 +Rk,p). (3.11)

It follows from (3.3d), (3.2d) and (3.11) that

γ|Uk,p+1 −Uk
(σ)|21 − (A−(Uk,p+1 −Uk

(σ))− (W k,p+1 −W k
(σ)),U

k,p+1 −Uk
(σ))

h

= 1
4µ(Xk,p+1 −Xk −Rk,p+1 +Rk,Xk,p+1 −Xk +Rk,p+1 −Rk)h

= 1
4µ(|Xk,p+1 −Xk|2h − |Rk,p+1 −Rk|2h). (3.12)

Choosing χ ≡ Uk,p+ 1
2 in (3.2a) and for j ∈ J+(Uk−1

(σ,)n) choosing r ≡ Uk(σ,)n(xj) in (3.3b), multiplying by ωj on

recalling (2.1) and summing over n and j, yields on noting that Uk(σ,)n(xj) = Uk,p+
1
2 (xj) for j ∈ J0(Uk−1

(σ,)n)

|Uk,p+ 1
2 −Uk

(σ)|2h + µ(DΨ1(Uk,p+ 1
2 )−DΨ1(Uk

(σ)),U
k,p+ 1

2 −Uk
(σ))

h ≤ (Rk,p −Rk,Uk,p+ 1
2 −Uk

(σ))
h. (3.13)

Combining (3.13) and (3.11) yields that

4µ(DΨ1(Uk,p+ 1
2 )−DΨ1(Uk

(σ)),U
k,p+ 1

2 −Uk
(σ))

h + |Xk,p+1 −Xk|2h ≤ |Rk,p −Rk|2h. (3.14)

As Uk,p+1, Uk
(σ) ∈ Shm, using (3.3c), (3.2b), (1.14a), (2.5a) and (2.33) it follows that

− (W k,p+1 −W k
(σ),U

k,p+1 −Uk
(σ))

h

= − (W
k,p+1 −W k

(σ),U
k,p+1 −Uk−1

(σ) )h − (W
k,p+1 −W k

(σ),U
k−1
(σ) −U

k
(σ))

h

= τk |[L(σ)(Uk−1
(σ) )]

1
2∇(W k,p+1 −W k

(σ))|20
+ τk ([L(σ)

maxI − L(σ)(Uk−1
(σ) )]∇(W

k,p+1 −W k,p
),∇(W

k,p+1 −W k

(σ)))

= τk |[L(σ)(Uk−1
(σ) )]

1
2∇(W k,p+1 −W k

(σ))|20

+ τk
2

[
|[L(σ)

maxI − L(σ)(Uk−1
(σ) )]

1
2∇(W

k,p+1 −W k

(σ))|20

− |[L(σ)
maxI − L(σ)(Uk−1

(σ) )]
1
2∇(W

k,p −W k

(σ))|20
+ |[L(σ)

maxI − L(σ)(Uk−1
(σ) )]

1
2∇(W

k,p+1 −W k,p
)|20
]
. (3.15)
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Combining (3.12), (3.14), (3.15) and rearranging yields that

γ|Uk,p+1 −Uk
(σ)|21 − (A−(Uk,p+1 −Uk

(σ)),U
k,p+1 −Uk

(σ))
h

+ (DΨ1(Uk,p+ 1
2 )−DΨ1(Uk

(σ)),U
k,p+ 1

2 −Uk
(σ))

h

+ τk |[L(σ)(Uk−1
(σ) )]

1
2∇(W k,p+1 −W k

(σ))|20
+ 1

4µ |R
k,p+1 −Rk|2h + τk

2 |[L
(σ)
maxI − L(σ)(Uk−1

(σ) )]
1
2∇(W

k,p+1 −W k

(σ))|20
≤ 1

4µ |R
k,p −Rk|2h + τk

2 |[L
(σ)
maxI − L(σ)(Uk−1

(σ) )]
1
2∇(W

k,p −W k

(σ))|20. (3.16)

Therefore noting the monotonicity of ψ′1(·) and the negative definiteness of A− we have that { 1
4µ |R

k,p−Rk|2h+
τk
2 |[L

(σ)
maxI − L(σ)(Uk−1

(σ) )]
1
2∇(W

k,p −W k

(σ))|20}p≥0 is a decreasing sequence which is bounded below and so has
a limit. Therefore the desired results (3.10) follow from this and (3.16). ut

Remark 3.1. Obviously the results above apply also to the approximation (Ph,τσ ) with the mobility matrix Lσ

replaced by L̂σ.

4. Logarithmic free energy

In this section we modify our approximations (Ph,τ(σ)) and the results in the previous two sections to cope with
the logarithmic free energy, that is

ψ1(r) := θ r ln r . (4.1)

Here we have the additional difficulty that ψ′1(·) is not uniformly bounded on (0, 1] with ψ′1(0) = −∞.
Our modified approximations are:

(P̃
h,τ

(σ)) For k ≥ 1, find {Uk
(σ),W

k
(σ)} ∈ Sh × Sh such that

(
Uk(σ)−U

k−1
(σ)

τk
,χ

)h
+
(
L(σ)(Uk−1

(σ) )∇W k
(σ),∇χ

)
= 0 ∀ χ ∈ Sh, (4.2a)

γ(∇Uk
(σ),∇χ) + (DΨ1(Uk

(σ))−A−Uk
(σ) +W k

(σ),χ)h = (A+Uk−1
(σ) ,χ)h ∀ χ ∈ Ṽ

h
(Uk−1

(σ) ); (4.2b)

where U0
(σ) ∈Kh

m is an approximation of u0 ∈Km and for all qh ∈Kh
m we define

Ṽ
h
(qh) :=

{
vh ∈ Sh : vhn(xj) = 0 ∀ j ∈ J0(qhn), n = 1→ N

}
. (4.3)

Clearly (4.2b) implicitly implies that Uk(σ,)n(xj) > 0 for all j ∈ J+(Uk−1
(σ,)n), n = 1→ N . Unfortunately as with

(Ph,τ ), we are only able to prove existence of a solution to (P̃h,τ ) in the case N = 2, see Barrett et al. [8, Sect. 4].

Here we will only consider the regularised approximation (Ph,τσ ) in which case, on recalling (2.36), Ṽ
h
(qh) ≡ Sh.

Well-posedness of (P̃h,τσ ) is proved via regularisation. Moreover, one can show that (P̃h,τσ ) has the property that
U0
σ > 0 implies Uk

σ > 0 for all k ≥ 1. The free energy component ψ1(·) is replaced by the twice continuously
differentiable function

ψ1,ε(r) :=
{
ψ1(r) ≡ θ r ln r ε ≤ r
θ r ln ε+ θ

2ε(r2 − ε2) r ≤ ε , (4.4)
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where ε ∈ (0, 1]. Let us emphasize that we introduce ψ1,ε only to prove well-posedness of problem (P̃h,τσ ). In
practice we solve (P̃h,τσ ) directly. The monotone function

ψ′1,ε(r) =
{
θ [ ln r + 1 ] ε ≤ r
θ [ ln ε+ ε−1r ] r ≤ ε , (4.5)

has the properties:

ψ′1(r) ≤ ψ′1,ε(r) ∀ r > 0, (4.6a)

(ψ′1,ε(r) − ψ′1,ε(s))2 ≤ ψ′′1,ε(min{r, s})(ψ′1,ε(r) − ψ′1,ε(s))(r − s)
≤ θ ε−1 (ψ′1,ε(r) − ψ′1,ε(s))(r − s) ∀ r, s. (4.6b)

We then introduce Ψε ∈ C1(RN ) defined by

Ψε(ζ) := Ψ1,ε(ζ)− 1
2ζ

TAζ , where Ψ1,ε(ζ) :=
N∑
n=1

ψ1,ε(ζn) . (4.7)

It is a simple matter, see Barrett and Blowey [2, p. 263], to show that Ψε is bounded below for ε ≤ ε0 :=
min{1, θ/(4N(N − 1)2λAmax)} and θ ≤ θmax; that is,

Ψε(ζ) ≥ θ

4ε

N∑
n=1

[ζn]2− − C(N, θmax, λAmax) ∀ ζ ∈M(1), (4.8)

where [ · ]− := min{·, 0} and λAmax is the largest positive eigenvalue of A. We introduce also the strictly convex
energy functional Ψ+

ε ∈ C1(RN ) defined by

Ψ+
ε (ζ) := Ψ1,ε(ζ)− 1

2ζ
TA−ζ. (4.9)

In order to prove well-posedness of (P̃h,τσ ), we require the assumptions (Ã) on the mesh. It follows from
(4.6b) and (Ã) for all ε ≤ 1 and for all κ ∈ T h that∫

κ

|∇πh[ψ′1,ε(χ)]|2 dx ≤ ψ′′1,ε(min
x∈κ

χ(x))
∫
κ

∇χ · ∇πh[ψ′1,ε(χ)] dx

≤ θ

ε

∫
κ

∇χ · ∇πh[ψ′1,ε(χ)] dx ∀ χ ∈ Sh, (4.10)

see for example Cialvaldini [13].

Theorem 4.1. Let Ω and T h be such that assumption (Ã) hold and let U0
σ ∈ Kh

m. In addition let Lσ satisfy
(2.4a,b). Then for all h > 0 and all time partitions {τk}Kk=1 there exists a unique solution {Uk

σ,W
k
σ}Kk=1 to

(P̃h,τ
σ ). Furthermore, the stability bounds (2.30) hold.

Proof. Given Uk−1
σ ∈Kh

m with |Uk−1
σ |1 ≤ C, we prove existence of {Uk

σ,W
k
σ} solving (4.2a,b) by introducing

a regularised version

Find {Uk
σ,ε,W

k
σ,ε} ∈ Sh × Sh such that(

Ukσ,ε−Uk−1
σ

∆t ,χ

)h
+
(
Lσ(Uk−1

σ )∇W k
σ,ε,∇χ

)
= 0 ∀ χ ∈ Sh, (4.11a)

γ(∇Uk
σ,ε,∇χ) + (DΨ1,ε(Uk

σ,ε)−A−Uk
σ,ε,χ)h = (W k

σ,ε +A+Uk−1
σ ,χ)h ∀ χ ∈ Sh. (4.11b)
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Similarly to (2.28), we have that

W k
σ,ε ≡ −Ĝh

σ,Uk−1
σ

(
Ukσ,ε−Uk−1

σ

τk

)
+ (
∫
− + (I −

∫
− ) 1

∑
− )πh [DΨ1,ε(Uk

σ,ε)− (A−Uk
σ,ε +A+Uk−1

σ ) ]. (4.12)

Hence (4.11a,b) can be restated as: Find Uk
σ,ε ∈ Sh such that

∫
− Uk

σ,ε =
∫
− u0 and

γ(∇Uk
σ,ε,∇χ) + ((I − 1

∑
− )(DΨ1,ε(Uk

σ,ε)− (A−Uk
σ,ε +A+Uk−1

σ )), (I −
∫
− )χ)h

+ (Ĝh
σ,Uk−1

σ

(
Ukσ,ε−Uk−1

σ

τk

)
,χ)h = 0 ∀ χ ∈ Sh . (4.13)

Existence of {Uk
σ,ε,W

k
σ,ε} and uniqueness of Uk

σ,ε then follows as for {Uk
σ,W

k
σ} in the proof of Theorem 2.1.

Uniqueness of W k
σ,ε follows immediately from (4.11b) and the uniqueness of Uk

σ,ε. Similarly to (2.32), on noting
the convexity of ψ1,ε, the semi positive definiteness of A+, −A− and the assumptions on Uk−1

σ , we have that
Uk
σ,ε −Uk−1

σ ∈ V h is such that

γ
2 |U

k
σ,ε|21 + γ

2 |U
k
σ,ε −Uk−1

σ |21 + (Ψε(Uk
σ,ε), 1)h + τk|[Lσ(Uk−1

σ )]
1
2∇W k

σ,ε|20
≤ (Ψε(Uk−1

σ ), 1)h + γ
2 |U

k−1
σ |21 ≤ C. (4.14)

From (4.14) and (4.8) we deduce that

|[Uk
σ,ε]−|2h ≤ Cε. (4.15)

On setting χ ≡ (I − 1
∑
− )πh [DΨ1,ε(Uk

σ,ε)] in (4.13), we have on noting (4.10), (4.6b), (2.15), (1.18), (2.7),
(4.14) and (4.8) that

ε |πh [DΨ1,ε(Uk
σ,ε)]|21 + |(I − 1

∑
− )(I −

∫
− )πh [DΨ1,ε(Uk

σ,ε)]|2h

≤ C

[
|Uk

σ,ε|20 + |Uk−1
σ |20 + σ−2 |[L(Uk−1

σ )]
1
2∇Ĝh

σ,Uk−1
σ

(
Ukσ,ε−Uk−1

σ

τk

)
|20
]

≤ C τ−1
k σ−2. (4.16)

Choosing χ ≡ Uk
σ,ε in (4.13) and noting (4.9), it follows for any constant ζ ∈ RN that

(DΨ+
ε (Uk

σ,ε), ζ −
∫
− Uk

σ,ε)
h ≤ (Ψ+

ε (ζ)−Ψ+
ε (Uk

σ,ε), 1)h

+ (A+Uk−1
σ − Ĝh

σ,Uk−1
σ

(
Ukσ,ε−Uk−1

σ

τk

)
, (I −

∫
− )Uk

σ,ε)
h . (4.17)

Choosing ζ ≡ (
∫
− Uk

σ,ε )±mne
n, n = 1→ N , in (4.17); noting that

∫
− Uk

σ,ε = m, (4.9), (4.8), (1.18), (2.7) and
(4.16) it follows that

|
∫
− πh [DΨ1,ε(Uk

σ,ε)]|2h ≤ C

[
1 + σ−2

∣∣∣∣[L(Uk−1
σ )]

1
2∇Ĝh

σ,Uk−1
σ

(
Ukσ,ε−Uk−1

σ

τk

)∣∣∣∣2
0

]
≤ C τ−1

k σ−2. (4.18)

Noting that N
∑
− Uk

σ,ε = 1 and the monotonicity of ψ′1,ε(·), it follows that

|ψ′1,ε( 1
N )−

∑
− πh[DΨ1,ε(Uk

σ,ε)]|2h ≤ | (I − 1
∑
− )πh[DΨ1,ε(Uk

σ,ε)]|2h. (4.19)
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Hence combining (4.16), (4.18) and (4.19) we have for ε ≤ min{ε0,
1
N } that

τk |πh[DΨ1,ε(Uk
σ,ε)] |2h ≤ C σ−2. (4.20)

It follows from (4.14), (4.8) and Uk
σ,ε − Uk−1

σ ∈ V h that there exists a Uk
σ and a subsequence {Uk

σ,ε′} such
that Uk

σ −Uk−1
σ ∈ V h and Uk

σ,ε′ → Uk
σ as ε′ → 0. It follows from (4.20) that there exists φh,k ∈ Sh such that

πh[DΨ1,ε′(Uk
σ,ε′)]→ φh,k as ε′ → 0. Noting that for all s ∈ R, [ψ′1,ε]−1(s)→ [ψ′1]−1(s) as ε→ 0 we have that

φh,k ≡ πh[DΨ1(Uk
σ)]. Therefore we may pass to the limit ε′ → 0 in (4.13) to prove existence of a solution to

(P̃h,τσ ) at time level tk on noting (4.12). Uniqueness of Uk
σ follows from the monotonicity of ψ1. Hence noting

(4.12), we have existence and uniqueness of a solution {Uk
σ,W

k
σ} to (P̃h,τσ ) at time level tk. As the bound

(4.20) holds with Ψ1,ε(Uk
σ,ε) replaced by Ψ1(Uk

σ), it follows that Uk
σ > 0. As the bound (4.14) holds with the

subscript “ε” removed, the stability bounds (2.30) follow as in the proof of Theorem 2.1. ut

Adopting the notation (2.50a,b) for the solution {Uk
σ,W

k
σ}Kk=1 of (P̃h,τσ ), we have the analogue of Theorem 2.2.

Theorem 4.2. Let the assumptions of Theorem 2.2 hold with (A) replaced by (Ã), and now in particular with
ψ1 assumed to be of the logarithmic form (4.1). Then there exists a subsequence of solutions {Uσ,W σ}h
of problem (P̃ h,τ

σ ) and a function u ∈ L∞(0, T ;K) ∩ H1(0, T ; (H1(Ω))′) ∩ C
1
2 ,

1
8

x,t (ΩT ) and functions znp ∈
L2
loc({ un > 0 } ∩ { up > 0 }), n, p = 1 → N with ∂

∂xznp ∈ L2
loc({ un > 0 } ∩ { up > 0 }) such that as h → 0

(2.54–2.56) and (2.57a,b) hold.

Proof. The proof is the same as that of Theorem 2.2 with the following minor changes. We only mention the
modifications caused by the presence of the logarithmic free energy which implies that ψ′1 becomes unbounded.
Clearly the inequality, the test function χ − U+

σ and Kh in (2.53b) are replaced by equality, χ and Sh,
respectively. Although (2.74) is redundant, (2.75) still holds on noting the above. It follows from (2.78)
and (2.71) that C ‖αδ,npZ+

(σ,)np‖L2(ΩT ) on the right hand side of the first inequality in (2.79) is replaced by
C(δ−1) ‖αδ,npZ+

(σ,)np‖L2(ΩT ) with the final bound of (2.79) remaining the same. Clearly (2.87) remains true for
all ηn ∈ L2(0, T ;H1(Ω)) with supp(ηn) ⊂ D+

δ,n on noting the technique used in (2.86). Hence (2.89) remains
true. ut

Theorem 4.3. We consider the approximation (Ph,τ
σ ) with the mobility matrix Lσ replaced by L̂σ and ψ1 of the

logarithmic form (4.1). Then the results of Theorems 2.1 and 2.2 remain true under their stated assumptions
with (A) replaced by (Ã) and Lσ replaced by L̂σ.

Furthermore, under the assumptions of Theorem 2.1 with (A) replaced by (Ã) it follows that (2.102) holds.
Moreover, under the assumptions of Theorem 2.2 with the additional constraint that τ ≤ Cσ2 as h → 0 we

have that the limit function u ∈ L2(0, T ;H2(Ω)).

Proof. The proof is exactly the same as that of Theorem 2.3 except for (2.107), which we replace by the
following. From (2.100), (2.106) and Uk

σ ∈Kh
m with Uk

σ > 0 we have for n = 1→ N that

γ |∆hUkσ,n|2h = −γ (∇Ukσ,n,∇(∆hUkσ,n)) ≤ − (W k
σ,n,∆

hUkσ,n)h + (ψ′1(Ukσ,n),∆hUkσ,n)h + C

= (∇W k
σ,n,∇Ukσ,n)− (∇πh[ψ′1(Ukσ,n)],∇Ukσ,n) + C

≤ (∇W k
σ,n,∇Ukσ,n) + C, (4.21)

on noting, similarly to (4.10), that for all κ ∈ T h∫
κ

∇χ · ∇πh[ψ′1(χ)] dx ≥ 0 ∀ χ ∈ Sh with χ > 0. (4.22)



742 J.W. BARRETT ET AL.

ut
A remark similar to that after Theorem 2.3 also applies in the logarithmic case for d ≥ 2. Finally we modify

the iterative algorithm in Section 3, to solve the nonlinear algebraic system for {Uk
σ,W

k
σ} arising in (P̃h,τσ ) with

Lσ or L̂σ. We have that {Uk
σ,W

k
σ} ∈ Sh × Sh satisfy

(Uk
σ + µDΨ1(Uk

σ),χ)h = (Rk,χ)h ∀ χ ∈ Sh (4.23)

in place of (3.2a) with (3.2b-d) remaining the same. Hence we modify our iterative procedure (3.3a-d) by
replacing (3.3b) by: find Un,p+ 1

2 ∈ Sh such that for n = 1→ N

U
k,p+ 1

2
n (xj) + µψ′1(Uk,p+

1
2

n (xj)) = Rk,pn (xj) ∀ j ∈ J (4.24)

and keeping (3.3a,c,d) the same. Existence and uniqueness of Uk,p+
1
2

n (xj) follows from the monotonicity of
ψ′1(·). Hence this modified iterative procedure is well-defined. Moreover, Theorem 3.1 still holds.

5. Numerical experiments

All computations were performed in double precision on a Sparc 20. The program was written in Fortran 77
using the NAG subroutine C06HBF for calculating the discrete cosine transform. In all experiments we compute
the solution to (Ph,∆t(σ) ) where Ψ1 is given by (1.8b), N = 3 and L(σ) given by (2.4a,b), (1.6) and ln(s) ≡ s,
n = 1→ N .

5.1. One space dimension

The computations were performed on a uniform partitioning of Ω = (0, 1) with mesh points xj = (j − 1)h,
j = 1→ #J , where h = 1/(#J − 1). We note that the integral on the right hand side of (3.4) can be evaluated
exactly using Simpson’s rule since the entries of L(σ)(·) are quadratic.

Experiment 1.
The aim of this experiment is two-fold. Firstly we demonstrate the fundamental difference between a non-

degenerate and a degenerate mobility matrix. Note that even though we have been unable to prove existence,
we have not experienced any difficulty in computing the approximation (Ph,τ ). Secondly we show that for σ
small and positive there is no significant difference between the numerical approximations (Ph,τσ ) and (Ph,τ ).
We set γ = 3.2× 10−3,

A = −

0 1 1
1 0 1
1 1 0

 =⇒ A− = − 2
3

1 1 1
1 1 1
1 1 1

 , A+ = 1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 ,

T = 6.4, σ = 0.1, Lσmax = 1
2 (1 + 3σ), #J = 101, uniform τ = 1.6 × 10−3, µ = 0.02 and took as our stopping

criterion: maxn=1→3 ‖Uk,p(σ,)n−U
k,p−1
(σ,)n ‖0,∞ ≤ tol := 10−8. We started with a stationary numerical solution (that

is the stopping criterion for the iterative procedure is satisfied in a single step from one time level to the next)
from an experiment where σ = 0 and m ≈ (0.48, 0.48, 0.04). We plot the resulting evolution in Figure 1. At
t = 2.56 the solution is graphically no different to the corresponding stationary numerical solution, which was
obtained by continuing the experiment further in time.

Fixing the same data as above, we chose σ = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 and 0. Obviously with
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Figure 1. Non-degenerate mobility.

σ = 0 we see no evolution from Figure 1 when t = 0. In the table below we make a comparison between the
resulting solution at t = 6.4 and the average number of iterations required for the algorithm to converge over
the last three time steps.

σ ‖Uσ(·, 6.4)−U0(·)‖0,∞ number of iterations
0 0 1

10−6 3× 10−5 1
10−5 1× 10−5 1
10−4 4× 10−4 7
10−3 4× 10−3 23
10−2 9× 10−2 46
10−1 0.13 30

By adapting an argument in Barrett and Blowey [3], see for instance page 29 where two bumps are present in
one component, it is possible to construct continuous stationary solutions with four bumps in one component.
For σ = 0 the heights of the bumps are not required to be equal, whereas for σ > 0 the heights of the bumps
have to be equal. Moreover, with σ = 10−4, 10−5 and 10−6 the graphs of Uσ(·, 6.4) and U0(·) are graphically
indistinguishable. From the table above we conclude that numerically with σ small and positive our computation
sees Lσ(·) as degenerate. We make two further conjectures based on this experiment:

1. For non-degenerate mobility a stationary solution with four bumps of equal height in one component is
unstable.

2. For degenerate mobility a stationary solution with four bumps of possibly unequal heights in one compo-
nent is stable.

5.2. Two space dimensions

All of our numerical experiments in two spatial dimensions are performed with a degenerate mobility and
Ω = (0, 1)× (0, 1). We took a uniform mesh consisting of squares e of length h = 1/256, each of which was then
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Figure 2. U(·, t) when t = 0.096, 0.32, 0.64, 0.96, 1.28 and 2.88.1

subdivided into two triangles by its north east diagonal. We used the following discrete inner product on C(Ω)

(χ1, χ2)h? :=
∫

Ω

Πh(χ1(x)χ2(x))dx (5.1)

in place of (2.1). Here Πh is the piecewise continuous bilinear interpolant on Ω which is affine linear for x1

(or x2) fixed and interpolates at the vertices on each square e. Using (5.1) instead of (2.1) only changes the
algorithm at the corners of the square Ω and has the advantage that one can then solve (3.6a), i.e. (3.9),
using “the discrete cosine transform”, see [11]. We note that similarly to (2.15) the discrete inner product (5.1)
is equivalent to the standard L2 inner product. Therefore, it is easy to adapt the proofs to show that the
Theorems 2.1, 2.3, 3.1, 4.1 and 4.3 in this paper remain true with this choice of discrete inner product. For the
above choice of ln(s), Ek,p satisfying (3.4) can be evaluated exactly by sampling at the mid-points of the sides
over each triangle κ. In these numerical results we expect to qualitatively predict the results of [23]. They
show that taking (P) with (1.8a) and the singular limit with scaling θ = O(ε), γ = ε2, t→ ε2t yields motion by
minus the Laplacian of the mean curvature for each of the interfaces. Moreover at triple junctions Young’s law,

1The figure is in color at www.edpsciences.org/docinfos/M2AN
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a no-flux condition and a continuity condition for chemical potentials have to hold and at the intersection of an
interface with an external boundary a Neumann type angle condition and a no-flux condition are obtained.

Experiment 2.
We now perform a degenerate mobility numerical experiment with the initial data, U0 ≡ m + δh, where

m = (0.15, 0.2, 0.65)T and δh is a random perturbation satisfying ‖δhn‖0,∞ ≤ 0.05, n = 1 → 3. All the other
parameters were the same as in experiment 1, except γ = 3.2× 10−4, µ = 0.01 and tol= 10−6. In Figure 2 the
pictures are arranged in a matrix format with time increasing to the right in rows then down columns. The first,
second and third components of U consist respectively of the medium, darkest and lightest shade of grey (red,
blue and green on the on-line version). We note that the final picture shows a numerical stationary solution.

The main driving force in Cahn-Hilliard systems, both for degenerate and for non-degenerate mobility, is
the reduction of the total amount of interfacial area (see e.g. [23] for the case of degenerate mobility and [12]
for the case of constant mobility). A main difference between degenerate and non-degenerate mobility is the
fact that in the case of degenerate mobility this is done only by local adjustments in connected phase regions,
whereas in the case of non-degenerate mobility also non-local interactions are used to achieve this. In the case of
degenerate mobility, diffusion takes place only through the narrow interfacial layers. In particular, in Figure 2
there is no diffusion from one chain to the other. Different chains of the two minor phases are pinned in chain
like structures and the coarsening process stops, even if there are still many disconnected regions present. The
qualitative behaviour of the numerical solution presented in Figure 2 is in accordance with the predictions of
the asymptotics in Garcke and Novick-Cohen [23].

In the case of a non-degenerate mobility matrix, diffusion through bulk regions is still possible and dis-
connected regions influence each other in order to decrease the total amount of interfacial area. For large
times, non-degenerate Cahn-Hilliard systems generically lead to situations where each phase occupies only one
connected part of the domain (see e.g. [3]).

Experiment 3.
All the data remained the same as in the previous experiment except we took the stationary numerical

solution from experiment 2 as the initial data and set

A = −

0 1 8
1 0 1
8 1 0

 =⇒ A− = − 1
12

 24 + 17
√

2 6 + 4
√

2 24 + 17
√

2

6 + 4
√

2 2
√

2 6 + 4
√

2

24 + 17
√

2 6 + 4
√

2 24 + 17
√

2



and

A+ = − 1
12

 −24− 17
√

2 6− 4
√

2 72− 17
√

2

6− 4
√

2 −2
√

2 6− 4
√

2

72− 17
√

2 6− 4
√

2 −24− 17
√

2

 .

In Figure 3 after a short period of time the second (dark grey) component surrounds the first (medium grey)
component. Note the final picture is not that of a stationary solution. In terms of an energy argument,
see (1.7a,b), this is understood to occur as the energy required to go directly from the first to the third
component is much greater than going via the intermediate second component. This phenomenon is known as
wetting. We remark that one phase wetting an interface between two other phases is of course not due to the
degenerate mobility matrix. It also occurs in the case of Cahn-Hilliard systems with a non-degenerate mobility
matrix and in Allen-Cahn systems (see [22, Fig. 10]).
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Figure 3. U(·, t) when t = 0, 0.032, 0.064, 0.128, 0.832 and 1.472.1

Experiment 4.
For this experiment, we considered a symmetric situation as in the paper by Ito and Kohsaka [25] who

studied the sharp interface problem derived by Garcke and Novick-Cohen [23]. We took the same data as in
experiment 2 except

U0(xi, yj) =



(0, 0, 1)T if 0 ≤ xi ≤ 13
16 and yi > 0.65 +

√
3

8π cos(8πxi)

or 13
16 ≤ xi ≤

13
16 + 0.15√

3
and yi > 0.65−

√
3(xi − 13

16 )
or 13

16 + 0.15√
3
≤ xi and yi >

1
2 ,

(0, 1, 0)T if 0 ≤ xi ≤ 13
16 and yi < 0.35−

√
3

8π cos(8πxi)

or 13
16 ≤ xi ≤

13
16 + 0.15√

3
and yi < 0.35 +

√
3(xi − 13

16 )
or 13

16 + 0.15√
3
≤ xi and yi <

1
2 ,

(0, 1
2 ,

1
2 )T if 13

16 + 0.15√
3
≤ xi and yi = 1

2 ,

(1, 0, 0)T otherwise.
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Figure 4. U(·, t) when t = 0, 0.32, 3.2 and 27.2.1

Notice that the angles at the triple junction in Figure 4 are good approximations to 2π
3 and the boundary

between the 1–2 transition and 1–3 transition meet the external boundary at approximately π
2 . What is

expected, and reflected in the numerical experiment, is that the symmetry of the initial data is maintained
during the evolution. We did not allow the numerical solution to reach its stationary profile as this would have
been an extremely expensive computation but the theoretical results by Ito and Kohsaka [25] indicate that the
solution will converge to two arcs and a line segment.

Taking a constant or non-degenerate mobility matrix would lead to similar looking results as those displayed
in Figure 4. In this case the limiting sharp interface problem is the multi-phase Mullins-Sekerka evolution
introduced in Bronsard et al. [12]. However, a result like the one of [25] is not known so far for this non-local
geometric evolution problem.
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