In this article, we consider the initial value problem which is obtained after a space discretization (with space step
Mots-clés : nonlinear diffusion equations, nonlinear parabolic problem, Chernoff scheme, implicit scheme for ODE's
@article{M2AN_2001__35_4_749_0, author = {Boillat, \'Eric}, title = {An implicit scheme to solve a system of {ODEs} arising from the space discretization of nonlinear diffusion equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {749--765}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1863278}, zbl = {0991.65091}, language = {en}, url = {https://www.numdam.org/item/M2AN_2001__35_4_749_0/} }
TY - JOUR AU - Boillat, Éric TI - An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 749 EP - 765 VL - 35 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/item/M2AN_2001__35_4_749_0/ LA - en ID - M2AN_2001__35_4_749_0 ER -
%0 Journal Article %A Boillat, Éric %T An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 749-765 %V 35 %N 4 %I EDP-Sciences %U https://www.numdam.org/item/M2AN_2001__35_4_749_0/ %G en %F M2AN_2001__35_4_749_0
Boillat, Éric. An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 749-765. https://www.numdam.org/item/M2AN_2001__35_4_749_0/
[1] The Stefan problem in several space variables. Trans. Amer. Math. Soc. 132 (1968) 51-87. | MR | Zbl
,
[2] A numerical method for solving
[3] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | MR | Zbl
,[4] Non-equilibrium thermodynamics. North-Holland, Amsterdam (1962).
and ,[5] Analyse fonctionnelle, Théorie et applications. Masson, Paris (1993). | MR | Zbl
,[6] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | MR | Zbl
and ,[7] Thermodynamics of irreversible processes. Interscience Publ. (1967).
,[8] A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979) 425-438. | MR | Zbl
,[9] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl
,[10] Error estimates for the multidimensional two-phase Stefan problem. Math. Comp. 39 (1982) 377-414. | MR | Zbl
and ,[11] Functional Analysis. Springer-Verlag, Berlin (1984).
,[12] Remarques sur l'approximation des problèmes paraboliques non-linéaires, in Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988) 297-318. | Zbl
,[13] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO. Modèl. Math. Anal. Numér. 21 (1987) 655-678. | Numdam | MR | Zbl
, and ,[14] Analyse numérique des équations différentielles. Masson (1989). | MR | Zbl
and ,[15] Multidimensional Stefan problems. SIAM J. Numer. Anal. 10 (1973) 522-538. | MR | Zbl
,[16] Modélisation et analyse numérique de problèmes de réaction-diffusion provenant de la solidification d'alliages binaires. Technical Report 2071, Thèse EPFL (1999).
,[17] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl
,[18] Finite element approximations of singular parabolic problems. Internat. J. Numer. Methods Engrg. 26 (1988) 1989-2007. | MR | Zbl
, and ,[19] The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). | MR | Zbl
,[20] Error analysis for implicit approximations to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68-87. | MR | Zbl
,[21] Galerkin finite element methods for Parabolic Problems. Springer-Verlag, Berlin (1984). | MR | Zbl
,[22] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO. Modèl. Math. Anal. Numér. 29 (1995) 605-627. | Numdam | MR | Zbl
and ,