The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce
Mots-clés : finite volume methods,
@article{M2AN_2001__35_4_767_0, author = {Coudi\`ere, Yves and Gallou\"et, Thierry and Herbin, Rapha\`ele}, title = {Discrete {Sobolev} inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {767--778}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1863279}, zbl = {0990.65122}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_4_767_0/} }
TY - JOUR AU - Coudière, Yves AU - Gallouët, Thierry AU - Herbin, Raphaèle TI - Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 767 EP - 778 VL - 35 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_4_767_0/ LA - en ID - M2AN_2001__35_4_767_0 ER -
%0 Journal Article %A Coudière, Yves %A Gallouët, Thierry %A Herbin, Raphaèle %T Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 767-778 %V 35 %N 4 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_4_767_0/ %G en %F M2AN_2001__35_4_767_0
Coudière, Yves; Gallouët, Thierry; Herbin, Raphaèle. Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 767-778. http://archive.numdam.org/item/M2AN_2001__35_4_767_0/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl
and ,[2] Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).
,[3] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl
,[4] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl
, and ,[5] A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995).
and ,[6] Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988). | MR | Zbl
,[7] A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).
and ,[8] Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168.
, and ,[9] Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | Zbl
, and ,[10] Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109-1295. | Numdam | Zbl
and ,[11] Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91-116. | Zbl
, and ,[12] Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843-861. | Numdam | Zbl
and ,[13] The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022. | Zbl
, and ,[14] A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. | Zbl
,[15] A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057. | Zbl
,[16] Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. | Zbl
and ,[17] Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035-1072. | Zbl
, and ,[18] Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987). | MR | Zbl
,[19] An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165-173. | Zbl
,[20] Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160.
,[21] A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994).
and ,[22] Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 .
and ,[23] Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. | Zbl
, and ,[24] The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511-536. | Zbl
and ,[25] Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. | Zbl
and ,[26] Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).
,[27] Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287-1313. | Zbl
, and ,