De nombreux problèmes en chimie quantique portent sur le calcul d’états fondamentaux ou excités de molécules et conduisent à la résolution de problèmes aux valeurs propres. Une des difficultés majeures dans ces calculs est la très grande dimension des systèmes qui sont en présence lors des simulations numériques. En effet les modes propres recherchés sont fonctions de variables où est le nombre de particules (électrons ou noyaux) de la molécule. Afin de réduire la dimension des systèmes à résoudre les chimistes multiplient les idées intéressantes qui permettent d’approcher le système complet. La méthode des variables adiabatiques entre dans ce cadre et nous présentons ici une étude mathématique rigoureuse de cette approximation. En particulier nous proposons un estimateur a posteriori qui pourrait permettre de vérifier l’hypothèse d’adiabaticité faite sur certaines variables ; des simulations numériques qui implémentent cet estimateur sont aussi présentées.
Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on variables where stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed many interesting ideas. Among those stands the adiabatic variable method; we present in this paper a mathematical analysis of this approximation and propose, in particular, an a posteriori estimate that might allow for verifying the adiabaticity hypothesis that is done on some variables; numerical simulations that support the a posteriori estimators obtained theoretically are also presented.
Mots clés : a posteriori estimator, adiabatic variable method, computational quantum chemistry, nuclear hamiltonian
@article{M2AN_2001__35_4_779_0, author = {Maday, Yvon and Turinici, Gabriel}, title = {Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {779--798}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1863280}, zbl = {0995.65112}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_4_779_0/} }
TY - JOUR AU - Maday, Yvon AU - Turinici, Gabriel TI - Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 779 EP - 798 VL - 35 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_4_779_0/ LA - en ID - M2AN_2001__35_4_779_0 ER -
%0 Journal Article %A Maday, Yvon %A Turinici, Gabriel %T Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 779-798 %V 35 %N 4 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_4_779_0/ %G en %F M2AN_2001__35_4_779_0
Maday, Yvon; Turinici, Gabriel. Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 779-798. http://archive.numdam.org/item/M2AN_2001__35_4_779_0/
[1] Adiabatic pseudospectral calculation of the vibrational states of the four atom molecules: Application to hydrogen peroxide. J. Chem. Phys. 102 (1995) 1270.
, and ,[2] Méthodes spectrales et les éléments spectraux. Institut de Recherche Mathématique de Rennes, Prépublications 1994-17 (1994).
, and ,[3] A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 241-246. | Zbl
and ,[4] Spectral methods, in Handbook of numerical analysis, Vol. V, Part 2, Ph. G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997). | MR
and ,[5] Approximations spectrales de problèmes aux limites elliptiques. Springer, Paris, Berlin, New York (1992). | MR | Zbl
and ,[6] Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, Part 2, Ph.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997). | MR
and ,[7] Spectral methods in fluid dynamics. Springer, Berlin (1987). | MR | Zbl
, , and ,[8] Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 5. Masson, CEA, Paris (1984). | Zbl
and ,[9] Adiabatic pseudospectral methods for multidimensional vibrational potentials. J. Chem. Phys. 99 (1993) 324.
, , and ,[10] Time-dependent quantum-mecanical methods for molecular dynamics. J. Chem. Phys. 92 (1988) 2087.
,[11] Fourier method for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys. 52 (1983) 35. | Zbl
and ,[12] Grid representation of rotating triatomics. J. Chem. Phys. 94 (1991) 6388.
,[13] Problèmes aux limites non-homogènes et applications. Dunod, Paris (1968). | Zbl
and ,[14] A posteriori error estimates for non-linear problems. Finite element discretisations of elliptic equations. Math. Comp. 62 (1994) 445-475 | Zbl
,[15] A review of a posteriori error estimates and adaptative mesh-refinement techniques. Wiley-Teubner, Stuttgart (1997). | Zbl
,[16] Theoretical study of the highly vibrationally excited states of : Ab initio potential energy surface and hyperspherical formulation. J. Chem. Phys. 99 (1993) 8848.
, and ,