A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.
Mots-clés : relaxation method, method of characteristics, contaminant transport, convection-diffusion with adsorption
@article{M2AN_2001__35_5_981_0, author = {Kacur, Jozef and Keer, Roger Van}, title = {Solution of contaminant transport with adsorption in porous media by the method of characteristics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {981--1006}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866278}, zbl = {0995.76070}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_5_981_0/} }
TY - JOUR AU - Kacur, Jozef AU - Keer, Roger Van TI - Solution of contaminant transport with adsorption in porous media by the method of characteristics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 981 EP - 1006 VL - 35 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_5_981_0/ LA - en ID - M2AN_2001__35_5_981_0 ER -
%0 Journal Article %A Kacur, Jozef %A Keer, Roger Van %T Solution of contaminant transport with adsorption in porous media by the method of characteristics %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 981-1006 %V 35 %N 5 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_5_981_0/ %G en %F M2AN_2001__35_5_981_0
Kacur, Jozef; Keer, Roger Van. Solution of contaminant transport with adsorption in porous media by the method of characteristics. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 981-1006. http://archive.numdam.org/item/M2AN_2001__35_5_981_0/
[1] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | Zbl
and ,[2] Finite element approximation of transport of reactive solutes in porous media. Part i: error estimates for nonequilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 201-227. | Zbl
and ,[3] Finite element approximation of transport of reactive solutes in porous media. Part ii: error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 455-479. | Zbl
and ,[4] An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics. SIAM J. Numer. Anal. 35 (1998) 1862-1882. | Zbl
and ,[5] Dynamics of Fluids in Porous Media. Elsevier, New York (1972).
,[6] Analysis of an algorithm for the Galerkin-characteristics method. Numer. Math. 60 (1991) 163-194. | Zbl
,[7] A Galerkin-characteristics algorithm for transport-diffusion equation. SIAM J. Numer. Anal. 32 (1995) 425-455. | Zbl
,[8] Godunov-mixed methods for advection diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315-1332. | Zbl
,[9] Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations. SIAM J. Numer. Anal. 35 (1998) 1709-1724. | Zbl
,[10] Large time asymptotics in contaminant transport in porous media. SIAM J. Appl. Math. 56 (1996) 965-993. | Zbl
, , and ,[11] Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics. SIAM J. Numer. Anal. 31 (1994) 982-999. | Zbl
, , and ,[12] R Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871-885. | Zbl
[13] Linear Operators. Part I: General Theory. John Wiley & Sons Ltd., New York (1959). | MR | Zbl
and ,[14] Asymptotic profiles with finite mass in one-dimensional contaminant transport through porous media. Quart. J. Mech. Appl. Math. 1 (1994) 69-106. | Zbl
, , and ,[15] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. | Numdam | Zbl
and ,[16] Solution of some free boundary problems by relaxation schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. | Zbl
,[17] Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19 (1999) 119-154. | Zbl
,[18] Approximation of degenerate parabolic systems by nondegenerate elliptic and parabolic systems. Appl. Numer. Math. 25 (1997) 1-21. | Zbl
and ,[19] Solution of convection-diffusion problems with the memory terms, in Applied Mathematical Analysis, A. Sequiera, H. Beirao de Veiga, and J.H. Videman, Eds., Kluwer Academic, Plenum Publ., New York (1999) 199-212. | Zbl
,[20] Mathematische Modelle für den Transport gelöstes Stoffe in sorbierenden Porösen Medien. Habilitationschrift, University of Augsburg, Germany (1989). | Zbl
,[21] Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: uniqueness. To appear. | Zbl
and ,[22] Function Spaces. Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). | MR | Zbl
, , and ,[23] Stability of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 4 (1988) 225-250. | Numdam | Zbl
, , and ,[24] Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). | MR
,[25] L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 105-110. | Zbl
,[26] On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38 (1982) 309-332. | Zbl
,[27] Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: Traveling waves. J. Reine Angew. Math. 415 (1991) 1-49. | Zbl
and ,