Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized.
Mots-clés : Min-plus eigenvalue problems, numerical analysis, Frenkel-kontorova model, Hamilton-Jacobi equations
@article{M2AN_2001__35_6_1185_0, author = {Baca\"er, Nicolas}, title = {Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, {Frenkel-Kontorova} models and homogenization of {Hamilton-Jacobi} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1185--1195}, publisher = {EDP-Sciences}, volume = {35}, number = {6}, year = {2001}, mrnumber = {1873522}, zbl = {1037.65054}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_6_1185_0/} }
TY - JOUR AU - Bacaër, Nicolas TI - Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 1185 EP - 1195 VL - 35 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_6_1185_0/ LA - en ID - M2AN_2001__35_6_1185_0 ER -
%0 Journal Article %A Bacaër, Nicolas %T Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 1185-1195 %V 35 %N 6 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_6_1185_0/ %G en %F M2AN_2001__35_6_1185_0
Bacaër, Nicolas. Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 6, pp. 1185-1195. http://archive.numdam.org/item/M2AN_2001__35_6_1185_0/
[1] The new concept of transitions by breaking of analyticity in a crystallographic model, in Solitons and Condensed Matter Physics, A.R. Bishop and T. Schneider, Eds., Springer-Verlag, Berlin (1978) 264-277.
,[2] The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Physica D 7 (1983) 240-258. | Zbl
,[3] Min-plus spectral theory and travelling fronts in combustion, in Proceedings of the Workshop on Max-Plus Algebras, Prague, August (2001). Submitted to S. Gaubert, Ed., Elsevier Science, Amsterdam.
,[4] Can one use Scilab's max-plus toolbox to solve eikonal equations?, in Proceedings of the Workshop on Max-Plus Algebras, Prague, August (2001). Submitted to S. Gaubert, Ed., Elsevier Science, Amsterdam.
,[5] Synchronization and Linearity. Wiley, Chichester (1992). | MR | Zbl
, , and ,[6] Ground states of one-dimensional systems using effective potentials. Phys. Rev. B 34 (1986) 6219-6234.
and ,[7] An additive eigenvalue problem of physics related to linear programming. Adv. in Appl. Math. 8 (1987) 486-498. | Zbl
and ,[8] Numerical computation of spectral elements in max-plus algebra. http://amadeus.inria.fr/gaubert/HOWARD.html
, , , and ,[9] Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula. Indiana Univ. Math. J. 45 (1996) 1095-1117. | Zbl
,[10] Endomorphisms of semimodules over semirings with idempotent operation. Math. USSR-Izv. 38 (1992) 91-105. | Zbl
and ,[11] Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Rational Mech. Anal. 157 (2001) 1-33. | Zbl
and ,[12] The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Longman Scientific & Technical, Harlow (1992). | MR | Zbl
,[13] Frenkel-Kontorova models of commensurate-incommensurate phase transitions, in Fundamental Problems in Statistical Mechanics. VII, H. van Beijeren, Ed., North-Holland, Amsterdam (1990) 69-110.
,[14] Idempotent Analysis and its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997). | MR | Zbl
and ,[15] The “hump” effect in solid propellant combustion. Interfaces Free Bound 2 (2000) 449-467. | Zbl
and ,[16] On the solutions of the equation arising from the singular limit of some eigen problems, in Stochastic Analysis, Control, Optimization and Applications, W.M. McEneaney et al., Eds., Birkhäuser, Boston (1999) 135-150. | Zbl
and ,