A modal synthesis method for the elastoacoustic vibration problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 1, p. 121-142
A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error estimates are given, and numerical experiments exhibiting the good performance of the method are reported.
DOI : https://doi.org/10.1051/m2an:2002005
Classification:  65N15,  65N25,  74F10
Keywords: fluid-structure interaction, elastoacoustic, modal synthesis
@article{M2AN_2002__36_1_121_0,
     author = {Berm\'udez, Alfredo and Hervella-Nieto, Luis and Rodr\'\i guez, Rodolfo},
     title = {A modal synthesis method for the elastoacoustic vibration problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     pages = {121-142},
     doi = {10.1051/m2an:2002005},
     zbl = {1066.74032},
     mrnumber = {1916295},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2002__36_1_121_0}
}
Bermúdez, Alfredo; Hervella-Nieto, Luis; Rodríguez, Rodolfo. A modal synthesis method for the elastoacoustic vibration problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 1, pp. 121-142. doi : 10.1051/m2an:2002005. http://www.numdam.org/item/M2AN_2002__36_1_121_0/

[1] I. Babuška and J. Osborn, Eigenvalue problems. In Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions, Eds., North Holland, Amsterdam (1991). | MR 1115240 | Zbl 0875.65087

[2] A. Bermúdez, P. Gamallo, L. Hervella-Nieto and R. Rodríguez, Finite element analysis of the elastoacoustic problem using the pressure in the fluid. Preprint DIM 2001-05, Universidad de Concepción, Concepción, Chile (submitted). | Zbl 1036.74044

[3] F. Bourquin, Analysis and comparison of several component mode synthesis methods on one-dimensional domains. Numer. Math. 58 (1990) 11-34. | Zbl 0686.34026

[4] F. Bourquin, Component mode synthesis and eigenvales of second order operators: Discretization and algorithm. RAIRO Modél. Math. Anal. Numér. 26 (1992) 385-423. | Numdam | Zbl 0765.65100

[5] F. Bourquin, A pure displacement dynamic substructuring method with accurate pressure for elastoacoustics. Laboratoire Central des Ponts et Chaussées, R/94/05/7 (1994).

[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[7] R. Craig and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313-1321. | Zbl 0159.56202

[8] R.L. Goldman, Vibration analysis of dynamic analysis. AIAA J. 7 (1969) 1152-1154. | Zbl 0179.55102

[9] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060

[10] P. Grisvard, Caractérisation de quelques espaces d'interpolation. Arch. Rat. Mech. Anal. 25 (1967) 40-63. | Zbl 0187.05901

[11] L. Hervella-Nieto, Métodos de elementos finitos y reducción modal para problemas de interacción fluido-estructura. Ph.D. thesis, Publicaciones del Departamento de Matemática Aplicada, 27, Universidad de Santiago de Compostela (2000).

[12] W.C. Hurty, Dynamic analysis of structural systems using component modes. AIAA J. 4 (1965) 678-685.

[13] W.G. Kolata, Approximation in variationally posed eigenvalues problems. Numer. Math. 29 (1978) 159-171. | Zbl 0352.65059

[14] J.L. Lions, Théorèmes de trace et d'interpolation (I). Ann. Scuola Norm. Sup. Pisa 13 (1959) 389-403. | Numdam | Zbl 0097.09502

[15] H.J.-P. Morand and R. Ohayon, Interactions Fluides-Structure. Masson, Paris (1996). | MR 1180076 | Zbl 0754.73071

[16] H.J.-P. Morand and R. Ohayon, Substructure variational analysis of the vibration of coupled fluid-structure systems. Finite element results. Internat. J. Numer. Methods Engrg. 14 (1979) 741-755. | Zbl 0402.73052

[17] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967). | MR 227584 | Zbl 1225.35003

[18] G. Sandberg, A new strategy for solving fluid-structure problems. Internat. J. Numer. Methods Engrg. 38 (1995) 357-370. | Zbl 0820.73072

[19] J. Wandinger, Analysis of small vibrations of coupled fluid-structure systems. Z. Angew. Math. Mech. 74 (1994) 37-42. | Zbl 0803.73026

[20] J.-L. Zolesio, Interpolation d'espaces de Sobolev avec conditions aux limites de type mêlé. C. R. Acad. Sci. Paris Série A 285 (1982) 621-624. | Zbl 0376.46018