Classification: 45K05, 92C55, 65N55

Keywords: linear transport, even parity formulation, diffusion approximation, domain decomposition, diffuse tomography

@article{M2AN_2002__36_1_69_0, author = {Bal, Guillaume and Maday, Yvon}, title = {Coupling of transport and diffusion models in linear transport theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, pages = {69-86}, doi = {10.1051/m2an:2002007}, zbl = {0995.45008}, mrnumber = {1916293}, language = {en}, url = {http://www.numdam.org/item/M2AN_2002__36_1_69_0} }

Bal, Guillaume; Maday, Yvon. Coupling of transport and diffusion models in linear transport theory. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 1, pp. 69-86. doi : 10.1051/m2an:2002007. http://www.numdam.org/item/M2AN_2002__36_1_69_0/

[1] Fast iterative methods for deterministic particle transport computations. Preprint (2001).

and ,[2] Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations. Nucl. Sci. Eng. 64 (1977) 344.

,[3] Homogenization of the criticality spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. | Numdam | Zbl 0931.35010

and ,[4] The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions. Med. Phys. 27 (2000) 252-264.

, , , and ,[5] Couplage d'équations et homogénéisation en transport neutronique. Thèse de Doctorat de l'Université Paris 6 (1997). In French.

,[6] First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport. SIAM J. Math. Anal. 30 (1999) 1208-1240. | Zbl 0937.35007

,[7] Spatially varying discrete ordinates methods in $XY-$geometry. M${}^{\phantom{\rule{0.166667em}{0ex}}3}$AS (Math. Models Methods Appl. Sci.) 10 (2000) 1277-1303. | Zbl 0969.65126

,[8] Transport through diffusive and non-diffusive regions, embedded objects, and clear layers. To appear in SIAM J. Appl. Math. | MR 1918572 | Zbl 1020.45004

,[9] Wave transport along surfaces with random impedance. Phys. Rev. B 6 (2000) 6228-6240.

, , , and ,[10] Diffusion approximation of radiative transfer problems with interfaces. SIAM J. Appl. Math. 60 (2000) 1887-1912. | Zbl 0976.45008

and ,[11] Boundary layers and homogenization of transport processes. Res. Inst. Math. Sci. Kyoto Univ. 15 (1979)53-157. | Zbl 0408.60100

, , and ,[12] Coupling Boltzmann and Euler equations without overlapping, in Domain Decomposition Methods in Science and Engineering, The Sixth International Conference on Domain Decomposition, Como, Italy, June 15-19, 1992, Contemp. Math. 157, American Mathematical Society, Providence, RI (1994) 377-398. | Zbl 0796.76063

, , , and ,[13] Théorèmes de trace ${L}^{p}$ pour des espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 831-834. | Zbl 0568.46030

,[14] Radiative Transfer. Dover Publications, New York (1960). | MR 111583

,[15] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058

,[16] Mathematical Analysis and Numerical Methods for Science and Technology 6. Springer-Verlag, Berlin (1993). | MR 1295030 | Zbl 0755.35001

and ,[17] Transport Theory. Wiley-Interscience, New York (1979). | MR 551868 | Zbl 0407.76001

and ,[18] An investigation of light transport through scattering bodies with non-scattering regions. Phys. Med. Biol. 41 (1996) 767-783.

, , , and ,[19] On the coupling of two-dimensional hyperbolic and elliptic equations: analytical and numerical approach, in Domain Decomposition Methods for Partial Differential Equations, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, 1989, SIAM, Philadelphia, PA (1990) 22-63. | Zbl 0709.65092

, , and ,[20] Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. | Zbl 0652.47031

, , , and ,[21] Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys. Med. Biol. 43 (1998) 1285-1302.

, , and ,[22] Wave Propagation and Scattering in Random Media. Academics, New York (1978). | Zbl 0873.65115

,[23] Méthodes de Monte-Carlo pour les équations de transport et de diffusion, in Mathématiques & Applications 29, Springer-Verlag, Berlin (1998). | MR 1621249 | Zbl 0886.65124

, and ,[24] Moment realizability and the validity of the Navier-Stokes equations for rarefied gas dynamics. Phys. Fluids 10 (1998) 3214-3226. | Zbl pre05179508

, and ,[25] Computational Methods of Neutron Transport. John Wiley & Sons, New York (1984). | Zbl 0594.65096

and ,[26] A Relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575-598. | Zbl 0661.65111

and ,[27] Méthodes mathématiques en neutronique, in Collection de la Direction des Études et Recherches d'EDF, Eyrolles (1995). In French.

,[28] Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327-370. | Zbl 0954.74533

, , and ,[29] Seismic Wave Propagation and Scattering in the Heterogeneous Earth, in AIP Series in Modern Acoustics and Signal Processing, AIP Press, Springer, New York (1998). | MR 1488700 | Zbl 0894.73001

and ,[30] Asymptotic analysis of a coupled system of kinetic equations. C. R. Acad. Sci. Paris Sér. I 328 (1999) 637-642. | Zbl 0945.76074

,[31] Application of moment realizability criteria for the coupling of the Boltzmann and Euler equations. Transport Theory Statist. Phys. 29 (2000) 759-783. | Zbl pre01612022

,