Mixed methods for the approximation of liquid crystal flows
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 2, p. 205-222
The numerical solution of the flow of a liquid crystal governed by a particular instance of the Ericksen-Leslie equations is considered. Convergence results for this system rely crucially upon energy estimates which involve H 2 (Ω) norms of the director field. We show how a mixed method may be used to eliminate the need for Hermite finite elements and establish convergence of the method.
DOI : https://doi.org/10.1051/m2an:2002010
Classification:  65M60,  76A15
Keywords: liquid crystals, mixed finite element approximation, convergence
@article{M2AN_2002__36_2_205_0,
     author = {Liu, Chun and Walkington, Noel J.},
     title = {Mixed methods for the approximation of liquid crystal flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {2},
     year = {2002},
     pages = {205-222},
     doi = {10.1051/m2an:2002010},
     zbl = {1032.76035},
     mrnumber = {1906815},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2002__36_2_205_0}
}
Liu, Chun; Walkington, Noel J. Mixed methods for the approximation of liquid crystal flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 2, pp. 205-222. doi : 10.1051/m2an:2002010. http://www.numdam.org/item/M2AN_2002__36_2_205_0/

[1] F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708-1726. | Zbl 0886.35010

[2] F. Alouges and J.M. Ghidaglia, Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66 (1997) 411-447. | Numdam | Zbl 0911.35007

[3] I. Babuška and A.K. Aziz, Survey lecutures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations, A.K. Aziz Ed., New York (1972), Academic Press, 5-359. | Zbl 0268.65052

[4] F. Bethuel and H. Brezis, Regularity of minimizers of relaxed problems for harmonic maps. J. Funct. Anal. 101 (1991) 145-161. | Zbl 0797.49034

[5] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vorticies. Klumer (1995).

[6] H. Brezis, New developments on the ginzburg-landau model. Topol. Methods Nonlinear Anal. 4 (1994) 227-236. | Zbl 0840.49003

[7] H. Brezis, J. Coron and E. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. | Zbl 0608.58016

[8] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, no. 15 in Computational Mathematics. Springer-Verlag (1991). | Zbl 0788.73002

[9] S. Chandrasekhar, Liquid Crystals. Cambridge (1992).

[10] Y.M. Chen and M. Struwe, Regularity for heat flow for harmonic maps. Math. Z. 201 (1989) 83-103. | Zbl 0652.58024

[11] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). | Zbl 0383.65058

[12] R. Cohen, R. Hardt, D. Kinderlehrer, S. Lin and M. Luskin, Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer, Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). | MR 900831 | Zbl 0713.76006

[13] R. Cohen, S. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals. Comp. Phys. 53 (1989) 455-465.

[14] M. Crouzeix and V. Thomee, The stability in L p and W 1,p of the L 2 projection onto finite element function spaces. Math. Comp. 48 (1987) 521-532. | Zbl 0637.41034

[15] T. Davis and E. Gartland, Finite element analsyis of the Landau-De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35 (1998) 336-362. | Zbl 0908.65120

[16] P.G. De Gennes, The Physics Of Liquid Crystals. Oxford (1974).

[17] J. Deang, Q. Du, M. Gunzburger and J. Peterson, Vortices in superconductors: modelling and computer simulations. Philos. Trans. Roy. Soc. London 355 (1997) 1957-1968. | Zbl 0893.35123

[18] Q. Du and F. Lin, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. | Zbl 0888.35054

[19] Q. Du, R.A. Nicolaides and X. Wu, Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity. SIAM J. Numer. Anal. 35 (1997) 1049-1072. | Zbl 0911.65139

[20] J. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR 158610

[21] F.C. Frank, On the theory of liquid crystals. Discuss. Faraday Soc. 28 (1958) 19-28.

[22] V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations, no. 749 in Lecture Notes in Mathematics. Springer Verlag, Berlin, Heidelbert, New York (1979). | MR 548867 | Zbl 0413.65081

[23] M. E. Gurtin, An introduction to continuum mechanics, no. 158 in Mathematics in Science and Engineering. Academic Press (1981). | MR 636255 | Zbl 0559.73001

[24] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J. L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). | MR 900833 | Zbl 0713.76006

[25] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | Zbl 0611.35077

[26] R. Hardt and F.H. Lin, Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | Zbl 0673.58016

[27] R. Jerard and M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | Zbl 0923.35167

[28] J. Jost, Harmonic mapping between Riemannian surfaces. Vol. 14 of Proc. of the C.M.A., Australian National University (1983).

[29] F. Leslie, Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis 28 (1968) 265-283. | Zbl 0159.57101

[30] F. Leslie, Some topics in equilibrium theory of liquid crystals, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, New York (1987) 211-234.

[31] F.H. Lin, Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school. Universidat Complutense de Madrid (1995).

[32] F.H. Lin, Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl 0853.35058

[33] F.H. Lin and C. Liu, Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | Zbl 0842.35084

[34] F.H. Lin and C. Liu, Global existence of solutions for the Ericksen Leslie-system. Arch. Rational Mech. Anal. (1998). | Zbl 0963.35158

[35] S. Lin and M. Luskin, Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26 (1989) 1310-1324. | Zbl 0685.65058

[36] C. Liu, Dynamic theory for incompressible smectic-A liquid crystals: Existence and regularity. Discrete Contin. Dynam. Systems 6 (2000) 591-608. | Zbl 1021.35083

[37] C. Liu and N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | Zbl 1040.76036

[38] C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl 0008.04203

[39] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. | Zbl 0483.65007

[40] A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L of the H 0 1 projection into finite element spaces. Math. Comp. 38 (1982) 1-22. | Zbl 0483.65006

[41] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Differential Geom. 17 (1982) 307-335. | Zbl 0521.58021

[42] J. Shatah, Weak solutions and development of singularities in su(2) σ-model. CPAM 41 (1988) 459-469. | Zbl 0686.35081

[43] R. Stenberg, On some three dimensional finite elements for incompressible materials. Comput. Methods Appl. Mech. Engrg. 63 (1987) 261-269. | Zbl 0684.73036

[44] R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495-508. | Zbl 0702.65095

[45] R. Temam, Navier-Stokes Equations. North Holland (1977). | MR 769654 | Zbl 0383.35057