Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 2, p. 325-343
The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear multivalued operator associated to cavitation and the fact of writing the elastic and hydrodynamic equations on two different domains. In a first step, we regularize the Heaviside operator. Additional difficulty related to the different domains is circumvented by means of prolongation and restriction operators, arriving to a regularized coupled problem. This one is decoupled into elastic and hydrodynamic parts, and we prove the existence of a fixed point for the global operator. Estimations obtained for the regularized problem allow us to prove the existence of solution to the original one. Finally, a numerical method is proposed in order to simulate a real journal-bearing device and illustrate the qualitative and quantitative properties of the solution.
DOI : https://doi.org/10.1051/m2an:2002015
Classification:  35R35,  74K25,  76D03,  76D08
Keywords: Koiter model, Reynolds equation, free boundary problems, fixed point techniques
@article{M2AN_2002__36_2_325_0,
     author = {Arregui, I\~nigo and Cend\'an, J. Jes\'us and V\'azquez, Carlos},
     title = {Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {2},
     year = {2002},
     pages = {325-343},
     doi = {10.1051/m2an:2002015},
     zbl = {1045.35092},
     mrnumber = {1906821},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2002__36_2_325_0}
}
Arregui, Iñigo; Cendán, J. Jesús; Vázquez, Carlos. Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 2, pp. 325-343. doi : 10.1051/m2an:2002015. http://www.numdam.org/item/M2AN_2002__36_2_325_0/

[1] S. Alvarez, Problemas de frontera libre en teoría de lubricación. Ph.D. thesis, Universidad Complutense de Madrid (1986).

[2] I. Arregui and C. Vázquez, Finite element solution of a Reynolds-Koiter coupled problem for the elastic journal bearing. Comput. Methods Appl. Mech. Engrg. 190 (2001) 2051-2062. | Zbl 1013.74019

[3] G. Bayada and M. Chambat, The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Optim. 14 (1986) 73-93. | Zbl 0701.76039

[4] G. Bayada and M. Chambat, Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. Theoret. Appl. Mech. 5 (1986) 703-729. | Zbl 0621.76030

[5] G. Bayada, M. Chambat and C. Vázquez, Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math. 98 (1998) 191-212. | Zbl 0948.76064

[6] G. Bayada, J. Durany and C. Vázquez, Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Methods Appl. Sci. 18 (1995) 255-266. | Zbl 0820.35110

[7] M. Bernadou and P.G. Ciarlet, Sur l'ellipiticité du modèle linéaire de coques de W.T. Koiter. Lecture Notes in Appl. Sci. Engrg. 34 (1976) 89-136. | Zbl 0356.73066

[8] M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. J. Elasticity 34 (1992) 645-667. | Zbl 0808.73045

[9] H. Brézis, Analyse fonctionnelle. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001

[10] A. Cameron, Basic lubrication theory. Ellis Horwood, West Sussex (1981).

[11] Ph. Destuynder, Modélisation des coques minces élastiques. Masson, Paris (1990). | MR 1036271 | Zbl 0723.73059

[12] Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part I: The mixed variational formulation. Comput. Methods Appl. Mech. Engrg. 120 (1995) 195-217. | Zbl 0852.73059

[13] Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part II: The numerical scheme. Comput. Methods Appl. Mech. Engrg. 120 (1995) 219-242. | Zbl 0852.73059

[14] J. Durany, G. García and C. Vázquez, An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model. RAIRO Modél. Math. Anal. Numér. 31 (1997) 495-516. | Numdam | Zbl 0879.73044

[15] J. Durany, G. García and C. Vázquez, Simulation of a lubricated Hertzian contact problem under imposed load. Finite Elem. Anal. Des. 38 (2002) 645-658. | Zbl 1073.74048

[16] V. Girault and P.A. Raviart, Finite element aproximation of the Navier-Stokes equations. Lecture Notes in Math. 749, Springer (1997). | Zbl 0413.65081

[17] T.G. Hughes, C.D. Elcoate and H.P. Evans, A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isotermal, line contact problems. Internat. J. Numer. Methods Engrg. 44 (1999) 1099-1113. | Zbl 0949.76048

[18] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000). | MR 1786735 | Zbl 0988.49003

[19] R. Verstappen, A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle. J. Comput. Phys. 97 (1991) 460-488. | Zbl 0737.76014

[20] S.R. Wu, A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Internat. J. Engrg. Sci. 24 (1986) 1001-1013. | Zbl 0583.73016

[21] S.R. Wu and J.T. Oden, A note on applications of adaptive finite elements to elastohydrodynamic lubrication problems. Comm. Appl. Numer. Methods 3 (1987) 485-494. | Zbl 0625.76041