@article{M2AN_2002__36_4_537_0, author = {Matache, Ana-Maria and Schwab, Christoph}, title = {Two-scale FEM for homogenization problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, pages = {537-572}, doi = {10.1051/m2an:2002025}, zbl = {1070.65572}, mrnumber = {1932304}, language = {en}, url = {http://www.numdam.org/item/M2AN_2002__36_4_537_0} }
Matache, Ana-Maria; Schwab, Christoph. Two-scale FEM for homogenization problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) no. 4, pp. 537-572. doi : 10.1051/m2an:2002025. http://www.numdam.org/item/M2AN_2002__36_4_537_0/
[1] Survey lectures on the mathematical foundation of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1973) 5-359. | Zbl 0268.65052
and ,[2] Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001
, and ,[3] Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). | MR 1676922 | Zbl 0929.35002
and ,[4] A Multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | Zbl 0880.73065
and ,[5] Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913-943. | Zbl 0922.65071
, and ,[6] Spectral- and -Finite Elements for problems with microstructure, Ph.D. thesis, ETH Zürich (2000).
,[7] Generalized -FEM in Homogenization. Numer. Math. 86 (2000) 319-375. | Zbl 0964.65125
, and ,[8] Two-scale regularity for homogenization problems with non-smooth fine-scale geometries, submitted. | Zbl 1076.35505
and ,[9] Finite dimensional approximations for elliptic problems with rapidly oscillating coefficients, in Multiscale Problems in Science and Technology, N. Antonić, C.J. van Duijn, W. Jäger and A. Mikelić Eds., Springer-Verlag (2002) 203-242. | Zbl 1165.35307 | Zbl pre01827875
and ,[10] An approach for constructing families of homogenized solutions for periodic media, I: An integral representation and its consequences, II: Properties of the kernel. SIAM J. Math. Anal. 22 (1991) 1-33. | Zbl 0729.35009
and ,[11] - and - Finite Element Methods. Oxford Science Publications (1998). | MR 1695813 | Zbl 0910.73003
,[12] High order generalized FEM for lattice materials, in Proc. of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Finland, 1999, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific, Singapore (2000). | MR 1936170 | Zbl 1007.74079
and ,[13] Finite Element Analysis1991). | MR 1164869 | Zbl 0792.73003
and ,[14] Mathematical Problems in Elasticity and Homogenization. North-Holland (1992). | MR 1195131 | Zbl 0768.73003
, and ,